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Abstract

In this thesis a comparison is made between pressure- and density-based solvers,
with the goal of determining which is best suited to simulations of the flight per-
formance of a supersonic sounding rocket. Although there exists plenty of work
on each of the two approaches to solving compressible flows, there appears to be
little in the way of direct comparison between them.

In the following, the theory behind each approach is investigated, as well as its im-
plementation in two solvers from the OpenFOAM v4.0 software package: rhoPim-
pleFoam and rhoCentralFoam. These two solvers are then also compared in terms
of numerical results in two separate test cases: an oblique shock generated by an
inclined wedge geometry, and Sod’s shock tube.
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Chapter 1

Introduction

Project EULER is an initiative by ARIS (Akademische Raumfahrt Initiative Schweiz),
a student group at ETH Zürich, to design, build and launch a sounding rocket to an
altitude of 30, 000 feet (9, 144 metres). Given the high target altitude, EULER will need
to travel at supersonic speeds: this presents an entirely new set of challenges for the
ARIS team.

From a simulations standpoint, one question
immediately presents itself: which CFD solver
is best suited to the task of simulating the
rocket’s flight? Of particular interest are the re-
sulting values for drag coefficients as well as
force and temperature distributions over the
rocket’s body during each flight phase.

The software of choice is OpenFOAM, a
widely recognized and well-tested CFD tool-
box suited to a large variety of applications.
Its open-source nature means it is possible
for us to investigate the implementation of its
solvers, allowing us to accurately determine
what algorithms they are using, even when the
documentation is lacking.

The wide range of Mach numbers we are interested in studying (from 0.3 to 2) already
tells us we are looking for a compressible solver. This already limits our choice to the
following three solvers [7]:

• rhoSimpleFoam is a steady-state solver designed to resolve compressible flows. It
implements the popular SIMPLE algorithm. It is a pressure-based solver.

• rhoPimpleFoam is a transient solver designed to resolve compressible flows. It
implements the PIMPLE algorithm unique to OpenFOAM and presented above.
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1. Introduction

Like rhoSimpleFoam, it is a pressure-based solver.

• rhoCentralFoam is also a transient and compressible solver, but it is density-based
in its approach. It implements the central-upwind schemes of Kurganov and
Tadmor.

We are interested in both transient and steady-state phenomena, therefore we will be
focusing our attention on the latter two solvers, since rhoSimpleFoam is only suitable
for steady-state problems. In all comparisons performed in this work, version 4.0 of
the OpenFOAM toolbox is used.

The two solvers are very different in nature:
rhoPimpleFoam is a pressure-based solver,
whereas rhoCentralFoam is a density-based
solver. In this work we investigate the differ-
ences between these two approaches: first a
theoretical overview of the algorithms driving
each solver is given, and then this is compared
to the actual implementation in OpenFOAM
v4.0 code.

Following this, two test cases are proposed to compare the actual performance of each
solver: an oblique shock produced by an inclined wedge, and Sod’s shock tube. Both
of these problems have well-known analytical solutions making them well suited to a
comparison of numerical results.
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Chapter 2

The pressure-based approach

2.1 The SIMPLE algorithm

The first pressure-based algorithm we will consider is SIMPLE (for Semi-Implicit
Method for Pressure Linked Equations). Introduced by Caretto et al in 1972 [2], it
is a steady-state solver for compressible or incompressible flows. It has seen many
variants over the years, making it one of the most commonly studied algorithms in
computational fluid dynamics.

This algorithm is implemented by the rhoSimpleFoam solver in OpenFOAM. Although
this particular solver is not the main focus of this work, understanding the theory and
implementation behind it will serve as a stepping stone towards rhoPimpleFoam.

The equations to be solved are expressed by the following system of differential equa-
tions, which express the physical laws of conservation of mass (continuity), conserva-
tion of momentum and conservation of energy:

∇ · (ρU) = 0, (2.1)
∇ · (ρU ⊗U) +∇p−∇ · σ = S, (2.2)

∇ · (UE + Up)−∇ · q̇−∇ · (Uσ) = Q, (2.3)

where σ is the stress tensor which is related in some way to the velocity field and S,
Q are source terms for momentum and energy respectively. Finally, q̇ is the diffusive
flux of energy, which is in some way related to the energy E.

Note that time-derivative terms have been dropped, since SIMPLE is a solver oriented
at steady-state problems.

We can reformulate the momentum equation 2.2 as:

∇ · (ρU ⊗U)−∇ · σ− S︸ ︷︷ ︸
Discretised as ∑n AnUn−S

= −∇p

3



2. The pressure-based approach

By introducing the operator H(U) = −∑n,n 6=p AnUn− s, where n indexes neighboring
cells, we obtain a semi-discretised form of the momentum equation for a cell p:

ApUp = H(U)−∇p (2.4)

U∗p = A−1
p H(U)− A−1

p ∇p. (2.5)

This is still not enough to solve the system of equations 2.1–2.2 however, since we
do not have an explicit formulation for p. On top of that, there is no guarantee that
the velocity field U∗ calculated in this manner actually conforms to the continuity
equation 2.1. This highlights the need for a corrector step to adjust the velocity field in
accordance with conservation of mass.

We multiply equation 2.5 by ρ and take its divergence:

∇ · (ρU∗p) = ∇ · (ρA−1
p H(U))−∇ · (ρA−1

p ∇p)

By applying the continuity equation 2.1, we obtain the following pressure equation:

∇ ·
(

ρA−1
p ∇p′

)
= ∇ ·

(
ρA−1

p H(U∗)
)

. (2.6)

Here U∗ is the initial guess for the velocity field, computed with equation 2.5. Solving
equation 2.6 yields us the updated pressure field p′, which we can now feed back into
equation 2.5 to obtain a corrected velocity field:

U′p = A−1
p H(U∗)− A−1

p ∇p′. (2.7)

It is worth noting that the pressure equation takes the form of a Poisson equation, for
which there are many well-known numerical solvers.

The SIMPLE algorithm in OpenFOAM can now be written as:

1. Set the boundary conditions.

2. Solve the momentum equation 2.2 to compute the intermediate velocity field.

3. Compute the mass fluxes ρU f at the cell faces by interpolation.

4. Solve the pressure equation 2.6 and apply under-relaxation.

5. Correct the mass fluxes at the cell faces.

6. Correct the velocities based on the new pressure field by means of equation 2.7.

7. Update the boundary conditions.

8. Repeat until convergence.
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2.2. Implementation of the rhoSimpleFoam solver

2.2 Implementation of the rhoSimpleFoam solver

Listing 2.1 shows a simplified version of the main file in OpenFOAM’s implementation
of the compressible SIMPLE algorithm, rhoSimpleFoam. The SIMPLE loop matches
the overall structure of the algorithm derived above: the file UEqn.H solves the mo-
mentum equation, and pEqn.H solves the pressure equation. Note that there is an
alternative version of the pressure equation, pcEqn.H, which implements the SIMPLE-
C (SIMPLE-Consistent) algorithm, a variant of SIMPLE.

1 while (simple.loop())

2 {

3 // Pressure -velocity SIMPLE corrector

4 #include "UEqn.H"

5 #include "EEqn.H"

6

7 if (simple.consistent ())

8 #include "pcEqn.H"

9 else

10 #include "pEqn.H"

11

12 turbulence ->correct ();

13 }

Listing 2.1: The main loop of rhoSimpleFoam

2.2.1 The momentum equation

Listing 2.2 shows part of the contents of UEqn.H, where the momentum equation 2.2 is
solved.

1 tmp <fvVectorMatrix > tUEqn

2 (

3 fvm::div(phi , U)

4 + MRF.DDt(rho , U)

5 + turbulence ->divDevRhoReff(U)

6 ==

7 fvOptions(rho , U)

8 );

9 fvVectorMatrix& UEqn = tUEqn.ref();

10

11 [...]

12

13 // Solve the Momentum equation

14 solve(UEqn == -fvc::grad(p));

Listing 2.2: The momentum equation in rhoSimpleFoam

The momentum equation can be reconstructed from the code in the following manner:

• fvm::div(phi, U) corresponds to ∇ · (ρU ⊗U), since in OpenFOAM phi generally
refers to face mass flux over cell faces, and is calculated as ρ ·U.
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2. The pressure-based approach

• MRF.DDt(rho , U) refers to a rate of change induced by a moving mesh (MRF
stands for Multiple Reference Frame), and can be neglected if using a station-
ary mesh.

• turbulence->divDevRhoReff(U) is the turbulence term, and depends on what turbu-
lence model is being used. It equates to the term −∇ · σ in the original equation,
and is typically approximated via the Reynolds-Averaged Navier-Stokes equa-
tions (RANS).

• fvOptions(rho, U) is used by OpenFOAM to add sources/sinks or impose con-
straints and numerical corrections.

• Finally, -fvc::grad(p) corresponds to the gradient of the pressure field: −∇p. It is
calculated explicitly with Finite Volume Calculus, represented by the fvc:: prefix,
and is based on the pressure field at the beginning of the time step.

Hence the velocity equation used in the first step of the SIMPLE algorithm is:

∇ · (ρU ⊗U)−∇ · σ = S−∇p

2.2.2 The pressure equation

OpenFOAM’s implementation of the pressure equation essentially has two versions,
depending on whether the “transonic” option is enabled (simple.transonic()). For sim-
plicity in this section, we will focus on the case where this option is disabled.

The most important part we focus our attention on is the definition of the pressure
equation:

1 volScalarField rAU (1.0/ UEqn.A());

2 surfaceScalarField rhorAUf("rhorAUf", fvc:: interpolate(rho*rAU));

3 volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

4

5 [...]

6

7 surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));

8

9 [...]

10 // --- Define the pressure equation

11 fvScalarMatrix pEqn

12 (

13 fvc::div(phiHbyA)

14 - fvm:: laplacian(rhorAUf , p)

15 ==

16 fvOptions(psi , p, rho.name())

17 );

Listing 2.3: The pressure equation in rhoSimpleFoam
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2.3. The PISO algorithm

• The term fvc::div(phiHbyA) corresponds to the term ∑ f S f ·
(

ρA−1
p H(U)

)
f
. phiHbyA

is calculated as fvc::flux(rho*HbyA), where fvc::flux calculates the face-flux of its
argument (namely S f (·) f ), and in turn rho*HbyA translates to ρA−1

p H(U).

• The term fvm::laplacian(rhorAUf, p) corresponds to ∇ ·
(

ρA−1
p ∇p

)
. The variable

rhorAUf equates to ρA−1
p and is computed by interpolation on the cell faces, since

p is stored on a staggered grid.

• fvOptions(psi, p, rho.name()) adds sources and sinks, as in the momentum equa-
tion.

It becomes clear that this equates to solving the pressure equation 2.6 derived above:

∇ ·
(

ρA−1
p ∇p

)
−∑

f

~S f ·
(

ρA−1
p H(U)

)
f
= 0.

Finally, having solved the above equation, the velocity field is updated according to
the discretised momentum equation 2.5:

1 // --- Correct the velocity field

2 U = HbyA - rAU*fvc::grad(p);

2.3 The PISO algorithm

The PISO (for Pressure Implicit with Splitting of Operators) algorithm, first introduced
by R. I. Issa in 1982 [4], is a non-iterative method for solving the coupled equations
arising from implicitly discretising the time-dependent fluid flow equations. It can be
applied to both compressible and incompressible versions of the transport equations,
however OpenFOAM’s implementation pisoFoam only tackles incompressible cases. A
compressible variant of the algorithm is implemented in the rhoPimpleFoam solver, which
implements the PIMPLE algorithm discussed later in this chapter.

We are now considering the more complete time-dependent form of the laws of conser-
vation of mass (continuity), conservation of momentum and conservation of energy:

∂ρ

∂t
+∇ · (ρU) = 0, (2.8)

∂

∂t
(ρU) +∇ · (ρU ⊗U) +∇p−∇ · σ = S, (2.9)

∂

∂t
E +∇ · (UE + Up)−∇ · q̇−∇ · (Uσ) = Q. (2.10)

The algorithm itself is rather similar to the SIMPLE algorithm presented above. In fact
it could be viewed as a transient variant of SIMPLE, with the important modification
that the momentum corrector step is performed more than once at each time step.
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2. The pressure-based approach

We derive the momentum predictor equation in the same manner as for the SIMPLE
algorithm:

U∗p = A−1
p H(Un)− A−1

p ∇pn. (2.11)

Solving this equation will yield an initial prediction U∗ for the velocity field at time
tn+1 based on the velocity and pressure fields at time tn. It should be noted that
although the PISO algorithm is transient, the additional terms owed to the time-
dependence of the problem only affect the A and H operators; the overall structure of
the algorithm is unchanged.

We now use the same Poisson equation as SIMPLE to compute the pressure field p∗:

∇ ·
(

A−1
p ∇p∗

)
= ∇ ·

(
A−1

p H(U∗)
)

. (2.12)

As before, we can now feed this pressure field back into the momentum equation 2.11
to obtain a corrected velocity field:

U∗∗p = A−1
p H(U∗)− A−1

p ∇p∗. (2.13)

Where SIMPLE would now proceed to the next iteration, PISO instead repeats these
last two steps:

∇ ·
(

A−1
p ∇p∗∗

)
= ∇ ·

(
A−1

p H(U∗∗)
)

, (2.14)

U∗∗∗p = A−1
p H(U∗∗)− A−1

p ∇p∗∗. (2.15)

This pressure corrector loop is repeated a set number of times before continuing to the
next time-step. Issa [4] states that if a second order accurate time stepping scheme is
used, then three corrector steps should be performed in order to reduce the discretiza-
tion error due to PISO to second order.

2.4 The PIMPLE algorithm in OpenFOAM

The pisoFoam solver in OpenFOAM implements the PISO algorithm; however, this
solver is incompressible only. The compressible variant of the algorithm is not directly
present in OpenFOAM, which offers the rhoPimpleFoam solver, which implements
the PIMPLE algorithm [7].

PIMPLE is a combination of the PISO and SIMPLE algorithms. It can be seen as
applying the SIMPLE algorithm at each time step, iterating until either convergence
is reached or a maximum number of iterations is reached. Within each iteration, the
pressure corrector is applied iteratively as well, much like in the PISO algorithm. The
advantage of PIMPLE over PISO is increased stability, even with Courant numbers
above 1.

We can write up the PIMPLE algorithm as:
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2.4. The PIMPLE algorithm in OpenFOAM

1. Repeat for each time step:

a) Repeat nOuterCorrections times, or until convergence:

i. Solve the momentum equation 2.11.
ii. Repeat nInnerCorrections times:

A. Solve equation 2.12 to obtain the pressure field.
B. Solve equation 2.13 to obtain the corrected velocity field.

Listing 2.4 shows a simplified version of OpenFOAM’s implementation of the PIMPLE
algorithm, rhoPimpleFoam. It is easy to see how the overall structure matches that
which is presented above.

1 while (runTime.run())

2 {

3 // --- Pressure -velocity PIMPLE corrector loop

4 while (pimple.loop())

5 {

6 #include "UEqn.H"

7 #include "EEqn.H"

8

9 // --- Pressure corrector loop

10 while (pimple.correct ())

11 #include "pEqn.H"

12 }

13 }

Listing 2.4: The time loop of rhoPimpleFoam

The contents of both UEqn.H and pEqn.H will not be presented here, as they are extremely
similar to those used in the rhoSimpleFoam solver and presented earlier; the only
addition being the time-dependent terms that were added in equations 2.8 and 2.9.
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Chapter 3

The density-based approach

A density-based approach tackles the same problem of compressible flows from a
rather different angle. For simplicity, let us consider the case of the one-dimensional
Euler equations:

∂

∂t
ρ +

∂

∂x
(ρu) = 0, (3.1)

∂

∂t
(ρu) +

∂

∂x
(
ρu2 + p

)
= 0, (3.2)

∂

∂t
E +

∂

∂x
(u(E + p)) = 0. (3.3)

Both solvers obtain the velocity field by solving the momentum equation (3.2). The dif-
ference arises in how the two methods determine the pressure field: where a pressure-
based solver sets up a pressure (or pressure-correction) equation, which is derived
by manipulating the continuity (3.1) and momentum (3.2) equations, a density-based
solver first obtains the density field directly from the continuity equation and then
derives the pressure field from that using an equation of state.

In this chapter we will look at how a particular class of finite volume schemes, called
central schemes, solves equations 3.1-3.3. Then we will delve into the code for the
rhoCentralFoam solver, which implements one such method.

3.1 Introduction: Finite Volumes for scalar conservation laws

First consider the generalized problem of a scalar conservation law [6], formulated as

∂

∂t
U +

∂

∂x
f (U) = 0. (3.4)

Here U is the quantity being conserved, and f is the flux function.
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3. The density-based approach

We will constrain ourselves to one spatial dimension and regular grids, but the method
can be generalized to several dimensions and irregular grids.

In a Finite Volumes method, we work with cell averages:

Un
j ≈

1
∆x

∫ xj+ 1
2

x
j− 1

2

U(x, tn)dx.

This is in stark contrast to Finite Difference methods, where point-values are stored
– the advantage being that the cell average is well-defined even for discontinuous
functions. This is a desirable property when dealing with supersonic flows, since
shock waves are indeed discontinuities in the fluid quantities.

We can now rewrite our conservation law 3.4 in integral form, by integrating over the
space-time domain [xj− 1

2
; xj+ 1

2
]× [tn; tn+1]:

∫ tn+1

tn

∫ xj+ 1
2

x
j− 1

2

∂

∂t
U dxdt +

∫ tn+1

tn

∫ xj+ 1
2

x
j− 1

2

∂

∂x
f (U) dxdt = 0.

By using the fundamental theorem of calculus we can manipulate the above into a
simpler form:

Un+1
j = Un

j −
∆t
∆x

(
F̄n

j+ 1
2
− F̄n

j− 1
2

)
, (3.5)

where Un
j is the cell-average of U in cell j at time tn, and F̄j+ 1

2
is the flux over the cell

face at xj+ 1
2
, averaged over the time step:

F̄n
j+ 1

2
=

1
∆t

∫ tn+1

tn
f (U(xj+ 1

2
, t)) dt. (3.6)

Note that the relation 3.5 is not explicit yet, since we need a priori knowledge of
the solution to compute F̄n

j+ 1
2
. However, S. K. Godunov showed in 1959 [3] that the

approximate flux in 3.6 is actually constant in time, allowing us to calculate it explicitly
based on the conditions at time tn:

F̄n
j+ 1

2
=

1
∆t

∫ tn+1

tn
f (U(xj+ 1

2
, t)) dt = Fn

j+ 1
2
.

This is thanks to the realization that at time tn, since Finite Volumes effectively approx-
imates the solution Un as a piecewise constant function comprised of the cell averages
in each cell, we effectively have a Riemann problem at each cell interface xj+ 1

2
where

there is a jump in the value of U. This means that, if we can solve that Riemann prob-
lem at time tn explicitly on a local scale, we can solve the scalar conservation problem
on a global scale!
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3.1. Introduction: Finite Volumes for scalar conservation laws

This leads us to the general Finite Volumes scheme for conservation laws:

Un+1
j = Un

j −
∆t
∆x

(
Fn

j+ 1
2
− Fn

j− 1
2

)
. (3.7)

Although the Riemann problem arising at cell interfaces can sometimes be solved
analytically, this is not always possible or practical. Therefore, most Finite Volume
schemes use approximate Riemann solvers to evaluate the fluxes Fn

j+ 1
2
: how exactly this

is done is the main ingredient to any FVM scheme.

3.1.1 Central schemes

One such class of approximate Riemann solvers are called central schemes. These are
based on a simple idea: the solution of a Riemann problem is replaced by one consist-
ing of two waves traveling in opposite directions with speeds sl

j+ 1
2

and sr
j+ 1

2
. It can be

shown that the numerical flux then takes the form [6]:

Fn
j+ 1

2
=

sr
j+ 1

2
f (Un

j )− sl
j+ 1

2
f (Un

j+1) + sr
j+ 1

2
sl

j+ 1
2
(Un

j+1 −Un
j )

sr
j+ 1

2
− sl

j+ 1
2

. (3.8)

The most prominent example of a central scheme is the Lax-Friedrichs scheme, which
assumes that both waves travel at the maximum speed possible, such that they don’t
interfere with the Riemann problems at neighboring boundaries. This speed is given
by the grid spacing ∆x and time step ∆t:

sl
j+ 1

2
= −∆x

∆t
, sr

j+ 1
2
=

∆x
∆t

.

Substituting into 3.8 yields

Fn
j+ 1

2
=

f (Un
j ) + f (Un

j + 1)

2
− ∆x

2∆t
(Un

j+1 −Un
j ),

and further using 3.7 we obtain the fully discrete formulation of the Lax-Friedrichs
scheme:

Un+1 =
Un

j+1 −Un
j−1

2
− ∆t

∆x
( f (Un

j+1)− f (Un
j−1)). (3.9)

It can be shown that this scheme is first-order accurate and stable. The main strength
of this scheme, and in fact all central schemes, is its simplicity – it can be applied as
a ”black box” solver for general (systems of) conservation laws 3.4, since it does not
involve any costly characteristic decomposition of the flux function f . However there
is no free lunch, as they say, and the Lax-Friedrichs scheme comes with one major
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3. The density-based approach

disadvantage: it suffers from large numerical dissipation, which smears over shocks
and the extrema of rarefaction waves.

There have been many proposed improvements to the Lax-Friedrichs scheme. In par-
ticular, rhoCentralFoam uses one such scheme proposed by Kurganov and Tadmor
in 1999 [5]. Delving into the details of how this is derived and implemented is be-
yond the scope of this work, however it is worthwhile to mention the two principal
improvements made over the Lax-Friedrichs scheme and the implications these have:

• The piecewise constant reconstruction of the solution Un by cell averages, which
produces first-order accurate schemes in space, is replaced by a piecewise linear
reconstruction, subject to the condition that the cell average be the same. This
brings the spatial discretization up to second order accuracy. This greatly de-
creases the numerical dissipation present in the Lax-Friedrichs scheme.

• The simplistic assumption made by the Lax-Friedrichs scheme about the wave
propagation speeds is refined to make a more accurate estimate of the local
speed of propagation. This also aids in counteracting the excessive numerical
dissipation.

It should also be noted that these schemes can be recast into semi-discrete form, mean-
ing that it is straightforward to increase the order of accuracy in time by applying
one of the many well-known high-order time integration schemes such as the Crank-
Nicholson scheme which is often used by OpenFOAM applications.

3.2 Implementation in rhoCentralFoam

It is straightforward to see how the one-dimensional Euler equations 3.1-3.3 can be
recast into a form matching that of the generalized conservation law 3.4:

∂

∂t

 ρ
ρu
E

+
∂

∂x

 ρu
ρu2 + p

u(E + p)

 = 0. (3.10)

The conserved quantity U is now a vector, however the scalar schemes described above
can still be applied in a straightforward manner to each of the three equations sepa-
rately [5]; furthermore they can be generalized to three spatial dimensions, but that
process will not be covered in detail here.

Looking at the source code for OpenFOAM’s rhoCentralFoam, we find the implemen-
tation of (the three-dimensional variant of) the Euler equations described above:

• First of all, the continuity equation 3.1. Note that the variable phi is used in
OpenFOAM to represent the mass flux over face areas, and equates to ρ · u in
our equations.

1 // --- Solve density (continuity equation)

2 solve(fvm::ddt(rho) + fvc::div(phi));

14



3.2. Implementation in rhoCentralFoam

• Secondly, the momentum equation 3.2. Here rhoU is ρ · u, and phiUp equates to
(ρ · u) · u + p.

1 // --- Solve momentum

2 solve(fvm::ddt(rhoU) + fvc::div(phiUp));

• Next, we have the energy equation 3.3. Similar to above, rhoE is ρ · E and phiEp

is ρu(E + p). Also note we have an additional term for viscosity, and that the
implementation scales this equation by ρ.

1 // --- Solve energy

2 solve

3 (

4 fvm::ddt(rhoE)

5 + fvc::div(phiEp)

6 - fvc::div(sigmaDotU)

7 );

• Finally, the pressure field is updated using the compressibility ψ = ρ
p :

1 /// --- Solve pressure

2 p.ref() = rho() / psi();

How ψ is evaluated depends on the thermophysical configuration of OpenFOAM
– specifically, which equation of state is being used. In the most common case
(and the one used in this work) of the ideal gas law we have:

pV = nRT ⇒ p =
nM
V

RT
M

= ρ
RT
M
⇒ ψ =

ρ

p
=

M
RT

,

where M is the molar mass of the simulated fluid.

For the sake of brevity we will not cover in-depth the manner in which the fields rhoU,
phiUp, etc. are assembled using the schemes by Kurganov and Tadmor. This process is
complicated somewhat by the three-dimensional nature of the solver, and the fact that
OpenFOAM uses generalized irregular polyhedral meshes.
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Chapter 4

Comparison: supersonic flow past wedge

The first test case taken into consideration was that of supersonic airflow past a wedge.
This textbook steady-state example of compressible flow has an analytical solution,
making it an ideal starting point for a comparison between solvers.

4.1 Introduction

As illustrated in Figure 4.1, a supersonic flow from the left impinges on an inclined
surface (the wedge), generating a discontinuity in the flow called an oblique shock.
Given the inlet Mach number M1 and the angle θ of the wedge’s surface, the shock’s
angle β is given by the θ − β−M equation:

tan θ = 2
M2

1 sin2 β− 1
M2

1(γ + cos 2β) + 2
cot β

Figure 4.1: An illustration of the wedge problem (Source: Wikimedia Commons).
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4. Comparison: supersonic flow past wedge

(a) 10 degree wedge. (b) 20 degree wedge.

Figure 4.2: The two computational meshes used.

Here γ is the adiabatic index, and depends on the physical properties of the modelled
fluid. For all calculations presented in this work, γ is taken to be 1.4 (the value for dry
air).

The Mach number M2 after the shock is derived from the relations for normal shocks,
by first calculating the Mach numbers in perpendicular direction relative to the shock
front:

Mn1 = M1 sin β

M2
n2 = 1− M2

n1 − 1

1 + 2γ
γ+1 (M2

n1 − 1)

M2 =
Mn2

sin(β− θ)

We use the same approach to compute the pressure jump p2
p1

across the shock:

p2

p1
=

2γ

γ + 1
M2

n1 −
γ− 1
γ + 1

Two geometries were used for the comparison: one with a 10 degree wedge and a
second with a 20 degree angle. Each of these was run with two inlet Mach numbers,
making four comparison cases. The computational meshes used are depicted in Fig-
ure 4.2.

Table 4.1 shows the exact values of the observed quantities calculated for each of the
test cases, for use as reference for the numerical experiments.
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4.2. Numerical experiments

Table 4.1: Exact solutions of the oblique shock problems considered

θ M1 β M2 p2/p1

10
1.5 56.6786767 1.11438369 1.66619322
2 39.3139318 1.64052221 1.7065786

20
2 53.4229405 1.21021838 2.8428627
3 37.7636341 1.99413166 3.77125746

(a) rhoPimpleFoam’s solution. (b) rhoCentralFoam’s solution.

Figure 4.3: Side-by-side comparison of the solutions to the first test case with M1 = 1.5
and θ = 10◦.

4.2 Numerical experiments

In this section we will investigate how well rhoPimpleFoam and rhoCentralFoam (im-
plemented in OpenFOAM v4.0) fare at reproducing the analytical results. Each solver
was run with all four test cases presented above. The Van Leer scheme was used in all
cases for spatial discretization, and implicit Euler for time discretization – although it
is less relevant, since the problem being treated is steady-state.

We expect a density-based solver to resolve the shocks more clearly than its pressure-
based counterpart. This is because, since it explicitly solves Riemann problems at each
cell interface, the discontinuities that arise in compressible problems should be trans-
ported more accurately. In particular, pressure-based solvers tend to diffuse shocks
gradually as they travel through the fluid – a phenomenon that a density-based solver
should not suffer from.

Figure 4.3 shows the Mach number values calculated by rhoPimpleFoam and rhoCen-
tralFoam in the case where θ = 10 and M1 = 1.5. It is apparent that the density-based
approach resolves shocks more clearly than the pressure-based: despite the use of Van
Leer discretization, which generally produces rather sharp shocks, rhoPimpleFoam
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4. Comparison: supersonic flow past wedge

visibly diffuses the discontinuity much more than rhoCentralFoam – in fact the lat-
ter resolves the shock to a length comparable to the cell size used. On top of that,
rhoPimpleFoam diffuses the shock more and more the further away from the source
of the shock we move (the wedge) – an unphysical behaviour typical of pressure-based
solvers and completely remedied by rhoCentralFoam’s approach. Finally, rhoPimple-
Foam presents overshooting after the shock, something which is almost completely
absent from rhoCentralFoam’s solution.

The more attentive reader will have noticed another difference between the solutions:
the two shocks propagate at different slopes – meaning that at least one of the solvers
presents some inaccuracy when it comes to the calculated slope β of the shock. This
brings us to the next part of our analysis: a comparison of the slope β of the shock,
as well as values for M2 and p2

p1
across the shock, to the analytical solutions calculated

above.

Tables 4.2 and 4.3 show the results for these values calculated by the rhoPimpleFoam
and rhoCentralFoam solvers respectively, including relative errors of each figure with
respect to the reference (analytical) solution.

Table 4.2: Results from the rhoPimpleFoam solver

θ M1 β Rel. error M2 Rel. error p2/p1 Rel. error

10
1.5 54 -4.73% 1.115618327 0.11% 1.666173008 0.00%
2 39.5 0.47% 1.641311905 0.05% 1.707707792 0.07%

20
2 52 -2.66% 1.212560159 0.19% 2.842354736 -0.02%
3 39 3.27% 1.988981188 -0.26% 3.798757552 0.73%

Before we analyze these numbers, a note on method: values for M2 and p2 were
obtained by averaging over the range below the shock wave, at the right boundary of
the computational domain. Values for β were measured by hand on a contour plot of
the solutions and, as such, are subject to measurement error estimated to be within
±3% relative to the values considered.

It is immediately apparent that rhoPimpleFoam is extremely adept at predicting the
values of M2 and p2 across the shock – in fact, all of its predictions lie within 1% of the
analytical values. rhoCentralFoam on the other hand seems less reliable, with errors

Table 4.3: Results from the rhoCentralFoam solver

θ M1 β Rel. error M2 Rel. error p2/p1 Rel. error

10
1.5 52 -8.25% 1.180810638 5.96% 1.576529862 -5.38%
2 38.5 -2.07% 1.690511905 3.05% 1.658893471 -2.79%

20
2 49.5 -7.34% 1.331521595 10.02% 2.641398152 -7.09%
3 37.5 -0.70% 2.127863366 6.71% 3.58902854 -4.83%
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4.3. Conclusions

of up to 10% on some values.

When it comes to the angle of the shock β, once again rhoPimpleFoam seems to out-
perform rhoCentralFoam in terms of relative accuracy in most cases, even accounting
for measurement errors. The two solvers are comparable for shallow angles, however
it appears that rhoCentralFoam suffers particularly when dealing with steeper values
of β. Whether this is due purely to happenstance, or whether there exists a real corre-
lation remains unclear; one might speculate that the alignment of the mesh cell faces
could relate to this issue – however further investigation would be required to make
any certain claims.

4.3 Conclusions

As is often the case, there is no clear answer as to which solver is most accurate for
this simple steady-state case study. Rather, the two solvers excel at different tasks:
the density-based rhoCentralFoam is adept at resolving sharp shocks and propagat-
ing them accurately in space; however its pressure-based counterpart rhoPimpleFoam
outperforms it when it comes to predicting the change in physical properties across
the discontinuity. Depending on the application, these differences may make one or
the other solver more desirable; however for the purpose of calculating the flight per-
formance of a rocket rhoPimpleFoam seems to be the clear winner.
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Chapter 5

Comparison: Sod’s shock tube

Fist investigated in-depth by Gary A. Sod in 1978 [8], Sod’s shock tube has become
a standard test for the accuracy of numerical solvers in the field of computational
fluid dynamics. Its simple nature means that an analytical solution can be computed,
despite being a time-dependent problem unlike the previous test case. In the following,
both of the OpenFOAM solvers being considered are run on Sod’s shock tube, and the
results compared to the analytical solution to the problem. This was generated using
a freely available analytical solver implemented in Python and maintained by Dr. I.
Backus [1].

5.1 Introduction

We have a 1-dimensional geometry, with x ∈ [0; 1]. Here a Riemann problem is set up
as initial conditions: we therefore have two regions of fluid separated by a diaphragm
at x = 0.5. The left and right regions of the initial conditions have different physical
properties:  pL

UL
ρL

 =

1.0
0.0
1.0

 ;

 pR
UR
ρR

 =

 0.1
0.0

0.125

 (5.1)

Upon removing the diaphragm at t = 0, the discontinuity evolves into several distinct
regions of fluid with varying pressure, density and temperature. Solving the Euler
equations for the given problem yields three distinct features in the fluid flow, namely
a rarefaction wave, a contact discontinuity and a shock wave. These can be seen in a
plot of the density after some time (see figure 5.1).

We observe the density profile at a time t > 0 before any wave has reached the bound-
ary, such as in figure 5.1. Points x1 and x2 represent the extremes of the rarefac-
tion wave which characterizes region II. Here the solution is continuous, however the
derivatives of some fluid quantities may not be [8]. Point x3 is the position that an
element of fluid originally at x0 = 0.5 has reached by time t. At this position there is
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5. Comparison: Sod’s shock tube

Figure 5.1: The exact solution of density at t = 0.2, with the ensuing fluid regions.

a contact discontinuity: the pressure and velocity are continuous, but there is a jump
in the density and temperature which travels at the velocity of the fluid in this region.
x4 marks the location of he shock wave moving to the right: all fluid quantities will in
general be discontinuous across such a shock. Regions I and V are still unaffected and
present the initial values 5.1 of the left and right sides of the Riemann problem.

The nature of this problem is such that we see all three types of discontinuities that
occur in compressible fluid flows: rarefaction waves, contact discontinuities and shock
waves. This property makes it an ideal test case to benchmark the performance of
compressible and transient numerical solvers.

5.2 Numerical experiments

5.2.1 Initial conditions in OpenFOAM

We would like to subject the two solvers rhoPimpleFoam and rhoCentralFoam to Sod’s
shock tube test, in order to compare their performance. However, OpenFOAM does
not allow us to explicitly define the density ρ of the fluid in the initial conditions;
instead, we get to define the temperature T. We must therefore calculate the tempera-
tures which will give us the correct initial densities ρL and ρR from 5.1 for both sides
of the Riemann problem. This can be done easily by leveraging the ideal gas relation:

pV = nRT, (5.2)
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5.3. Conclusions

where V is the volume of fluid, n is the amount of substance in moles and R =
8.314 463 m3 Pa K−1 mol−1 is the ideal gas constant. We relate the density ρ to the
volume V and the amount of substance n via the molar mass of the fluid M, which we
defined in the OpenFOAM configuration as M = 0.028 97 kg mol−1 (corresponding to
dry air):

ρ =
nM
V
⇒ M

ρ
=

V
n

(5.3)

Combining 5.2 and 5.3 we can calculate the temperatures we need:

T =
pM
ρR

(5.4)

 pL
UL
TL

 =

 1.0
0.0

3.484290× 10−3

 ;

 pR
UR
TR

 =

 0.1
0.0

2.787432× 10−3

 (5.5)

5.2.2 Results

All simulations run in this section were performed with 200 cells, upwind spatial
discretization and implicit Euler time discretization. The time step was chosen to be
∆t = 1× 10−4s.

Figures 5.2 and 5.3 show the time evolution of the solutions from t = 0 to t = 0.2s
calculated by rhoPimpleFoam and rhoCentralFoam respectively. Similar to the wedge
test case, we see that rhoCentralFoam tends to resolve much sharper shocks than
rhoPimpleFoam, despite the extremely dissipative upwind discretization. This can be
seen in particular when comparing the pressure or velocity graphs for the two solvers.
What’s more, rhoPimpleFoam tends to diffuse discontinuities gradually over time as
well: this is particularly egregious when looking at the evolution of the shock wave in
the velocity profile over time. On the other hand, rhoCentralFoam maintains the shock
wave unchanged as it travels along the x axis.

Figure 5.4 compares the numerical solutions from both solvers to the exact solution
at t = 0.2. Once again, rhoCentralFoam presents much sharper discontinuities than
its pressure-based counterpart; however, their positions and the jumps in the values
of fluid quantities are not always as accurate. For instance, the rarefaction wave is
visibly shifted in the temperature plot; and the temperature in region III (between the
rarefaction wave and the contact discontinuity) appears overestimated with respect to
the exact solution.

5.3 Conclusions

In addition to the qualitative considerations made above, we wish to make a more
quantitative evaluation of the accuracy of two solvers. As a measure of the overall
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5. Comparison: Sod’s shock tube

(a) Pressure. (b) Density.

(c) Velocity. (d) Temperature.

Figure 5.2: Time evolution of the rhoPimpleFoam solution from t = 0 to t = 0.2.

accuracy of each solver, we use the normalized L1 error norm, which we evaluate as:

L1(Qn, Q∗) =
1

Qre f

N=200

∑
i=0
|Q∗(i · 1

N
, n · ∆t)−Qn

i |, (5.6)

where Qn
i is the numerical solution for an arbitrary fluid quantity Q at time step n

and cell i, and Q∗ denotes the exact solution for that same quantity. Qre f denotes the
reference value for Q which was taken to be the initial value of the property in the left
half of the domain, as defined in equations 5.1 and 5.5, with the exception of velocity
where Ure f was taken to be unity.

The resulting values for the L1 error norm for times t = 0.05, 0.1, 0.15, 0.2 are reported
in table 5.1 both for rhoPimpleFoam and rhoCentralFoam.
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5.3. Conclusions

(a) Pressure. (b) Density.

(c) Velocity. (d) Temperature.

Figure 5.3: Time evolution of the rhoCentralFoam solution from t = 0 to t = 0.2.

The takeaway from this table is fairly unambiguous: rhoCentralFoam is overall the
more accurate solver, managing to keep its L1 error norm below or on par with its
competitor. The one major exception here is the temperature profile, where rhoPim-
pleFoam outperforms rhoCentralFoam.
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5. Comparison: Sod’s shock tube

(a) Pressure. (b) Density.

(c) Velocity. (d) Temperature.

Figure 5.4: Comparison of the two solvers to the exact solution at t = 0.2.

Table 5.1: Normalized L1 error norms of both numerical solutions

rhoPimpleFoam t = 0.05 t = 0.1 t = 0.15 t = 0.2
p 1.9051 2.6689 3.3577 3.8180
ρ 1.7071 2.5219 3.2185 3.7374
U 4.7684 6.5525 8.3462 9.2785
T 2.7284 3.7757 4.8423 5.4644

rhoCentralFoam t = 0.05 t = 0.1 t = 0.15 t = 0.2
p 1.7272 2.3440 2.8524 3.3806
ρ 1.6435 2.4459 3.1280 3.7782
U 3.7053 4.9110 6.0614 7.1656
T 3.4495 5.6248 7.6288 9.5964
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Chapter 6

Conclusions and final remarks

As expected, the density-based solver rhoCentralFoam was able to capture shocks
much more accurately than the pressure-based rhoPimpleFoam, which has a tendency
to diffuse discontinuities. However, it was surprising to see rhoCentralFoam perform-
ing so badly when it came to predicting the jumps in fluid quantities across shocks
and other discontinuity. This would seem to indicate that the schemes implemented in
rhoCentralFoam from OpenFOAM v4.0 are not conservative, however more detailed
investigation would be required in order to be certain.

6.1 A note on runtime performance

One further comparison metric which has not yet been mentioned is the runtime of
each solver. Whilst not strictly related to accuracy, this is definitely a factor worth
considering when selecting a solver, especially for larger cases. Table 6.1 reports the
runtime in seconds for each solver in each test case, as well as the speedup S =

Tp
Ts

of
rhoCentralFoam over rhoPimpleFoam.

In all test cases, rhoCentralFoam is considerably faster than rhoPimpleFoam. This is
to be expected – the pressure-based solver sets up a Poisson equation to correct the
velocities, and does so several times per time step. This has an obvious impact on
performance.

It is worth noting that the comparison made here is not completely fair: both solvers

Table 6.1: Solver runtime

Runtime [s] Oblique shock Shock tube
rhoPimpleFoam 645.49 634.95 636.11 631.61 32.07
rhoCentralFoam 353.67 351.44 346.42 344.58 8.74

Speedup 183% 181% 184% 183% 367%
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were run with the same timestep and therefore the same number of time steps were
taken by each solver. However, rhoPimpleFoam should, at least in theory, be able
to handle larger timesteps owing to its exceptional stability, something which may
compensate for the imbalance highlighted here.

6.2 Future work

Owing to the Coronavirus pandemic and the ensuing lockdown, it was unfortunately
not possible to compare the two solvers on the actual geometry of the EULER rocket.
Despite this, the results obtained here are of great value, and open the door for future
work:

• Further investigation of the large errors produced by rhoCentralFoam, perhaps
with a more recent version of OpenFOAM which may have made some improve-
ments to the implementation.

• A comparison of the values for drag forces produced by the solvers, for instance
using a diamond-shaped airfoil (which has an analytical solution for supersonic
speeds) or one of the NACA airfoils, which have been extensively characterized
in the past both numerically and experimentally.

• A more rigorous study of the runtime performance of the solvers, particularly
with larger test cases requiring parallel execution.
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Appendix A

Wedge with reflection

Figure A.1: Pressure field of the rhoPimpleFoam solution.

Figure A.2: Pressure field of the rhoCentralFoam solution.

Figures A.1 and A.2 illustrate a variant of the wedge geometry, where the right-hand
side of the domain has been extended to allow for two reflections of the shock wave to
occur. A symmetry condition was applied at the upper boundary of the domain. Van
Leer discretization was used for both solvers; the Mach number at the inlet on the left
is 3.

It is immediately apparent that rhoCentralFoam produces a much smoother solution
after the shock; rhoPimpleFoam presents some oscillations which are advected with
the fluid. The peak pressure at the sites of the reflection is also higher in the rhoPimple-
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A. Wedge with reflection

Foam solution, and the position of the two reflections is also affected by the difference
in the solvers.
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