COMPARATIVE STUDY OF DENSITY-BASED VS. PRESSURE-BASED SOLVERS FOR SUPERSONIC FLOW Bachelor Thesis

Sean Bone

Supervisor: Prof. Dr. P. Jenny Insitute for Fluid Dynamics ETH Zürich

November 21, 2020

- Project EULER: build a sounding rocket to reach 30k ft (≈ 9km)
- Supersonic!
- What solver to use for CFD?
- Opportunity for real-world validation

- rhoPimpleFoam: pressure-based compressible and transient solver
- rhoCentralFoam: density-based compressible and transient solver

Open<mark></mark>∇FOAM

Conservation of mass (continuity), momentum, and energy:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U) = 0, \tag{1}$$

$$\frac{\partial}{\partial t}(\rho U) + \nabla \cdot (\rho U \otimes U) + \nabla p - \nabla \cdot \sigma = S,$$
(2)

$$\frac{\partial}{\partial t}E + \nabla \cdot (UE + Up) - \nabla \cdot \dot{q} - \nabla \cdot (U\sigma) = Q.$$
(3)

- Solve the momentum equation for U
- Derive pressure equation from continuity and momentum equations
- Solve pressure equation for p
- Correct the velocity field with the pressure field

- Solve the momentum equation for U
- Derive pressure equation from continuity and momentum equations
- Solve pressure equation for p
- Correct the velocity field with the pressure field

■ In general, we expect:

- Diffuse shocks
- Shocks are diffused over time

- Solve the momentum equation for U
- Derive pressure equation from continuity and momentum equations
- Solve pressure equation for p
- Correct the velocity field with the pressure field

■ In general, we expect:

- Diffuse shocks
- Shocks are diffused over time

Density-based solvers:

- ► Solve the momentum equation for *U*
- Solve continuity equation for ρ
- Use equations of state to obtain p
- Shocks are explicitly considered when solving equations
- Make assumptions about shock speeds

- Solve the momentum equation for U
- Derive pressure equation from continuity and momentum equations
- Solve pressure equation for p
- Correct the velocity field with the pressure field

In general, we expect:

- Diffuse shocks
- Shocks are diffused over time

Density-based solvers:

- ► Solve the momentum equation for *U*
- Solve continuity equation for ρ
- Use equations of state to obtain p
- Shocks are explicitly considered when solving equations
- Make assumptions about shock speeds
- In general, we expect:
 - Sharp shocks
 - Shocks are conserved over time

Figure 1: An illustration of the wedge problem (Source: Wikimedia Commons)

Comparison 1: Supersonic flow past wedge

Figure 2: rhoPimpleFoam's solution

Figure 3: rhoCentralFoam's solution

θ	M_1	β	Rel. error	M_2	Rel. error	p_2/p_1	Rel. error
10	1.5	54	-4.73%	1.115618327	0.11%	1.666173008	0.00%
	2	39.5	0.47%	1.641311905	0.05%	1.707707792	0.07%
20	2	52	-2.66%	1.212560159	0.19%	2.842354736	-0.02%
	3	39	3.27%	1.988981188	-0.26%	3.798757552	0.73%

Table 1: Results from the rhoPimpleFoam solver

Table 2: Results from the rhoCentralFoam solver

θ	M_1	β	Rel. error	M_2	Rel. error	p_2/p_1	Rel. error
10	1.5	52	-8.25%	1.180810638	5.96%	1.576529862	-5.38%
	2	38.5	-2.07%	1.690511905	3.05%	1.658893471	-2.79%
20	2	49.5	-7.34%	1.331521595	10.02%	2.641398152	-7.09%
	3	37.5	-0.70%	2.127863366	6.71%	3.58902854	-4.83%

COMPARISON 1: CONCLUSIONS

rhoPimpleFoam (pressure-based):

- Diffuses shock waves
- Diffusion gets worse further downstream
- Has overshooting
- Predicts slope fairly well despite diffusion
- ▶ Predicts values before/after shocks extremely well (< 1% error)

rhoCentralFoam (density-based):

- Resolves very sharp shocks
- Preserves shocks effectively
- No overshooting
- Not always as accurate at predicting shock slope
- Presents much larger errors when predicting values before/after shock (up to 10%! error)

- 1-D geometry
- Setup is a standard Riemann problem:

$$\begin{pmatrix} p_L \\ U_L \\ \rho_L \end{pmatrix} = \begin{pmatrix} 1.0 \\ 0.0 \\ 1.0 \end{pmatrix}; \quad \begin{pmatrix} p_R \\ U_R \\ \rho_R \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.0 \\ 0.125 \end{pmatrix}$$

(4)

Figure 4: The exact solution of density at t = 0.2, with the ensuing fluid regions.

BUT: OpenFOAM has variables p, U, T

■ Use ideal gas law to calculate value of *T*:

$$pV = nRT, \quad \rho = \frac{nM}{V} \quad \Rightarrow T = \frac{pM}{\rho R}$$
(5)
$$\begin{pmatrix} p_L \\ U_L \\ T_L \end{pmatrix} = \begin{pmatrix} 1.0 \\ 0.0 \\ 3.484290 \times 10^{-3} \end{pmatrix}; \quad \begin{pmatrix} p_R \\ U_R \\ T_R \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.0 \\ 2.787432 \times 10^{-3} \end{pmatrix}$$
(6)

Figure 5: Comparison to exact solution of density at t = 0.2.

Figure 6: Comparison to exact solution of velocity at t = 0.2.

Figure 7: Time evolution of the velocity solution from t = 0 to t = 0.2.

A more quantitative comparison metric, the L_1 norm:

$$L_1(Q^n, Q^*) = \frac{1}{Q_{ref}} \sum_{i=0}^{N=200} |Q^*(i \cdot \frac{1}{N}, n \cdot \Delta t) - Q_i^n|$$
(7)

Table 3: Normalized L_1 error norms of both numerical solutions

rhoPimpleFoam	t = 0.05	t = 0.1	t = 0.15	t = 0.2
р	1.9051	2.6689	3.3577	3.8180
ρ	1.7071	2.5219	3.2185	3.7374
U	4.7684	6.5525	8.3462	9.2785
Т	2.7284	3.7757	4.8423	5.4644
rhoCentralFoam	t = 0.05	t = 0.1	t = 0.15	t = 0.2
р	1.7272	2.3440	2.8524	3.3806
p	1.7272 1.6435	2.3440 2.4459	2.8524 3.1280	3.3806 3.7782
ρ ρ U	1.72721.64353.7053	2.3440 2.4459 4.9110	2.8524 3.1280 6.0614	3.3806 3.7782 7.1656

OVERALL CONCLUSIONS

rhoPimpleFoam (pressure-based):

- Diffuses shock waves
- Diffusion gets worse further downstream
- May show overshooting
- Predicts shock speed fairly well despite diffusion
- Predicts values before/after shocks quite well

rhoCentralFoam (density-based):

- Resolves very sharp shocks
- Preserves shocks effectively
- No overshooting
- Not always as accurate at predicting shock speed
- Presents larger errors when predicting values before/after shock

OVERALL CONCLUSIONS

rhoPimpleFoam (pressure-based):

- Diffuses shock waves
- Diffusion gets worse further downstream
- May show overshooting
- Predicts shock speed fairly well despite diffusion
- Predicts values before/after shocks quite well
- Overall errors are larger

rhoCentralFoam (density-based):

- Resolves very sharp shocks
- Preserves shocks effectively
- No overshooting
- Not always as accurate at predicting shock speed
- Presents larger errors when predicting values before/after shock
- Overall errors are smaller

Table 4: Solver runtime

Runtime [s]		Shock tube			
rhoPimpleFoam	645.49	634.95	636.11	631.61	32.07
rhoCentralFoam	353.67	351.44	346.42	344.58	8.74
Speedup	183%	181%	184%	183%	367%

- Rocket simulations!
- Impact on drag coefficients
- Detailed study of time evolution of errors
- Detailed study of run-time performance

THANK YOU FOR YOUR ATTENTION!