OPTIMISATION OF A FLIP ALGORITHM

Christoph Amevor Sean Bone

Felix Illes Mikael Stellio

Department of Computer Science
ETH Zurich, Switzerland

The following is the report for the project of group 32 in the
FS21 Advanced Systems Lab lecture.

ABSTRACT

The Fluid Implicit Particle (FLIP) algorithm is commonly
used in computer graphics to simulate fluids such as smoke
or water. To improve the scale and realism of these simu-
lations, we may wish to increase the number of cells and
particles, which comes at the cost of higher memory us-
age and increased runtime. It is therefore desirable to op-
timise the implementation, in order to maximise the quality
of the results that can be achieved in a given time. In this
work, we focus on optimising an existing implementation
of a FLIP algorithm; in particular, we design improved data
structures and implement a highly optimised sparse linear
systems solver which outperforms the previous Eigen-based
implementation.

1. INTRODUCTION

A plethora of algorithms exist in the realm of computa-
tional fluid dynamics (CFD), each of which has its merits
and drawbacks. Engineering applications tend to favor grid-
based (Eulerian) methods, as these can achieve very high
physical accuracy. In Computer Graphics however, we may
wish to forego some accuracy in favour of greater artistic
freedom and turnaround time. As a result, particle-based

(Lagrangian) and hybrid (Lagriangian-Eulerian) methods such

as FLIP are popular, since they can easily model fluid sur-

faces, are generally quite fast, and can still look appealing.
Motivation. A baseline C++ implementation of a FLIP

method was provided as part of a previous group project, in-

volving two of the current team members, from the “Physically-

Based Simulation for Computer Graphics” lecture at ETHZ.
Simulating a 22-second video for that project took over 18
hours: optimising the code could allow for higher-quality
results in the same time. Furthermore, FLIP is composed
of multiple components, each of which could be optimised
independently, making for an ideal group project.
Contribution. In this project, we aimed at developing a
highly optimised version of the FLIP algorithm. We started
from a baseline implementation that made extensive use of

the Eigen library. We optimised with a focus on the Intel
Skylake architecture and the Advanced Vector Extensions 2
(AVX?2) instruction set. The optimised version now runs up-
wards of 8 times faster than the original implementation and
requires considerably less memory. It is worth mentioning
that, alongside other optimisations, we implemented a cus-
tom incomplete Cholesky conjugate gradient (ICCG) solver
to better exploit the known structure of our specific prob-
lem. The new solver outperforms comparable options found
in the Eigen library which were employed in the baseline
implementation of the algorithm.

2. BACKGROUND

We begin by looking at the incompressible Navier-Stokes
equations, which model the fluid flows we are interested in.
ou Vp

a:f+uvzﬁfﬁ~Vﬁ77 (1)

Vi =0 2)

Here 4 is the velocity field and F refers to the external
forces such as gravity. The term vV24 represents the dif-
fusion of the fluid velocity field, and models the viscosity
of the fluid. This term is commonly discarded in Com-
puter Graphics applications, since the artificial diffusion in-
troduced by discretisation errors usually more than makes
up for its absence. The term « - V4 models self-advection,
which represents the transport of velocity by the velocity
field itself. The last term ~2 subtracts the pressure gradient
adjusted to the density, which is generally taken to be con-
stant. Finally, equation (2) imposes an important property
of incompressible fluid flows, namely that the velocity field
is divergence-free.

In general, there are two commonly used frameworks
when modeling fluids: Lagrangian and Eulerian. A Lag-
rangian method will model the fluid with particles which
conserve velocity, whereas an Eulerian approach will use a
grid instead, to more accurately represent the velocity field
of the fluid. The FLIP algorithm attempts to combine the
strengths of both methods, and is termed a hybrid method
because it combines the use of particles, used to keep track

of the fluid’s surface, with the use of a marker-and-cell method

(MAC) grid, used to impose the divergence-free property.

Operator Splitting. The FLIP algorithm solves the in-
compressible Navier-Stokes equations by operator splitting.
In other words, equation (1) is separated into two steps which
are applied in succession:

0i . . =
E—&-qu—F, (3)
ou Vp
= 4
B . “)

where the pressure field in (4) is calculated as follows to im-
pose condition (2), resulting in the following Poisson equa-
tion:

Vip=V.i. (5)

One timestep of the FLIP algorithm can be summarised
as follows:

1. Compute the velocity field by projecting the velocit-
ies from the particles to the grid (particle-to-grid pro-
jection).

2. Apply external forces to the velocity field.
3. Enforce boundary conditions.

4. Compute pressure gradients by solving (5) and cor-
rect the velocity field to be divergence-free with (4).

5. Update particle velocities (grid-to-particle projection).

6. Advect particles using 2"-order Runge-Kutta to solve
equation (3).

7. Reconstruct the surface mesh of the fluid using a level
set and the marching cubes algorithm.

2.1. Pressure Correction

To conserve mass we aim for a divergence-free velocity
field. By solving the Poisson equation (5) we can calculate
the pressure field, which we use to enforce a divergence-free
velocity. The discretisation of the Poisson equation results
in a large sparse linear system of equations (LSE) of the
form Ap = d, where A € RNenwxNeais - We note that the
original implementation defers solving the LSE to a library.
The matrix A has a very simple structure: the diagonal de-
pends solely on the domain geometry, thus it can be precom-
puted. Furthermore, all off-diagonal elements turn out to be
either 0 or —1, and could be easily computed on-the-fly.
PCG algorithm. Preconditioned Conjugate Gradient
(PCG) algorithms lend themselves to solving such systems.
Although conjugate gradient algorithms may take up to N
steps in general, convergence is much quicker given a suit-
able preconditioning matrix M and solving the precondi-
tioned LSE M Ap = Md instead. Pseudocode for the PCG

algorithm is shown in Algorithm 1, where the function app1yM(r)

consists of the matrix-vector product M in symbolic terms
(and applyA(s) represents As). For efficiency and stabil-
ity reasons, instead of computing the inverted matrix M,
practical implementations use forward and backward sub-
stitutions to solve the LSE M ~1s = r.

Algorithm 1 PCG solver

1: procedure SOLVE(d)

2: p< 0

3 r—d

4: s < applyM(r)

5: p<r-s

6 fori + 1 :max_steps do
7 o 2

8 Z + applyA(s)

9: P<pPta-s

10: r<r—oua-z

11: if ||r]l1 < tol then
12: return p

13: end if

14: z < applyM(r)
15: B+ %

16: pz-r

17: s« f[-s+z

18: end for

19: end procedure

Incomplete Cholesky preconditioner. A is symmet-
ric positive definite (spd), implying existence of a Cholesky
factorization A = LL*, where L is a lower triangular mat-
rix. As the inverse of L is in general a dense matrix even for
sparse A (rendering the computation infeasible), it is com-
monplace to use incomplete Cholesky (IC) factorization (so
called because the sparsity pattern of A is retained during
factorization) with any values outside the non-zero regions
of A being discarded. The preconditioner M is given as the
inverse of the IC factorization, and its diagonal entry M; ;
can be computed according to

M; ;e = (Ai»J}k'+Mi2—1,j,k+Mi2,j—1,k+Mi2,j,k—1)71' (6)

2.2. Surface reconstruction

In FLIP simulation, the fluid surface at a particular timestep
is defined as a level set at value O of a signed distance func-
tion (SDF). This SDF is determined by the positions of the
particles (denoted by x;):

P(Zy) = ||Zg — X|| — 7, (7)

where = .
¢ ZikalllE — |/ Ry, ©
> k(1Zg — Z5ll/R)

and 7 is a parameter representing the average particle radius.
The kernel function k; is defined to decay with the distance
between particle and grid point: k; = max (0, (1 — s2)3).

Notice that ¢(Z) is negative where & is in close proxim-
ity to many particles, i.e. within the fluid volume, and pos-
itive for & far away from the fluid. The isosurface of value
0 determines the fluid surface. This SDF is discretised by
evaluating it at a set of points arranged in a regular grid.
This discretisation is then used to compute a mesh approx-
imation of the surface using the marching cubes algorithm
[1]. The resulting meshes may be stored to disk and later
imported into a rendering program in order to create real-
istic or stylized video footage of the simulation.

2.3. Cost analysis

Due to the complexity of the FLIP algorithm, we were forced
to rely on instrumentation of the code to retrieve the cost of
each substep. The number of floating point additions, multi-
plications, and divisions were measured alongside the num-
ber of memory reads, assuming a write-back/write-allocate
cache. Note that only operations relevant for the algorithm
were taken into account, while computations necessary for
branch selection or index computations were discarded and
deemed as overhead.

Substep Additions Multiplications Divisions Read bytes
Particle-to-grid 2.50 - 1010 1.84 - 10%° 2.51-10° 1.05-10%°
Pressure correction 4.68 - 10° 4.35-10° 1.58 - 10° 9.47 - 10%°
Grid-to-particle 6.16 - 10% 3.36 - 108 0 2.84 - 10°
Advection 3.54-10% 2.24-10% 3 1.65 - 10°

Table 1: Cost analysis for a “dam-break™ simulation using
6 272 640 particles on a 480x 160x 80 grid.

For reference, the table above shows the operations count
for a large simulation. Note that the number of divisions is
several orders of magnitude less than other floating point
operations, and is therefore neglected for the computation
of performance and operational intensity.

Finally, it is interesting to point out that the disparity
between bytes read in the pressure correction routine and
other substeps will increase non-linearly with the problem
size, thus values in Table 1 only provide a general idea.

3. OPTIMISATIONS

In the following we will outline the optimisations we per-
formed on the different sections of the code. The optimisa-
tions are presented in the chronological order in which their

implementation was completed.

3.1. Level set computation (v1.2)

Profiling of this substep showed that the external marching
cubes algorithm used [2] contributed only marginally to the
runtime. We therefore focused on the computation of the
discretised level set. The original implementation already
featured a set of approximations that allowed some optim-
isations. For example, each particle was given a finite region
of influence in the computation of the level set function ¢,
reducing the complexity from O(m - n) to O(n), where m
is the number of grid corners and n is the number of points.

Many opportunities for optimisation were present, such
as refactoring the weight function and the corresponding
kernel function to avoid square roots, but also strength re-
duction, minimizing the use of conditionals inside loops,
manual inlining, and separation of boundary and interior
loops.

3.2. Particles data structure (v1.3)

Since FLIP is a hybrid Eulerian-Lagrangian method, it ne-
cessarily contains two major data structures: a grid to store
fields, and an ensemble of particles to represent point-like
samplings of the fluid volume and velocity. In principle,
each particle can be represented by six floating-point num-
bers: a 3D position and a 3D velocity vector. In this section,
we will cover the optimisation of the data structure repres-
enting the particle ensemble.

In the baseline implementation, individual particles were
represented by a data structure, and the ensemble consisted
of an array of these structures. This has two main performance-
related issues.

Firstly, particle positions are alternated in memory with
velocities (X-y-z-u-v-w-x...). In kernels where we only care
about the particle’s position, we end up indirectly loading
some velocities anyway, just because they are in the same
cache block as the particle’s position. This effectively wastes
bandwidth and lowers the kernel’s computational intensity.

Secondly, the particle structures only allowed access to
members through getters and setters. Since these were im-
plemented in a separate x.cpp file, they became “black
boxes” for the compiler, and could not be inlined. This
hampered the compiler’s ability to perform optimisations.
Furthermore, in some instances the getters/setters were con-
verting to/from Eigen vectors, which was unnecessary in
most cases and introduced overhead.

In order to address all of the issues presented above, we
opted to switch from an array of structs to a struct of arrays.
This new particles data structure contains six arrays, one
per component of a particle, which ensures memory conti-
guity of like data. Furthermore, direct access to these lists
was allowed, thus removing the “black box” effect. With

no getter and setter methods, conversions to and from Eigen
vectors were now only performed where strictly necessary
(and were eventually removed entirely in subsequent optim-
isation passes).

3.3. Interpolation routine (v1.4)

In the context of FLIP, interpolation refers to the process of
reconstructing the velocity vector at an arbitrary position in
the simulation domain, from the MAC grid. Velocity inter-
polation is required by both the grid-to-particle projection
and the particle advection steps.

In most cases, an interpolation call boils down to trilin-
ear interpolation from eight values. However, if the position
we want to interpolate to is in a boundary cell, we have two
edge cases: if the point is near an outer face, we need to
perform bilinear interpolation on that face, and if it is near
an outer edge, we need to perform linear interpolation. Fur-
ther, bilinear interpolation has six variants (one per face of
a cube), and linear interpolation has eight (one per edge of
a cube).

The situation is further complicated by the fact that, on
a MAC grid, the three components of the velocity vector
field are not stored in the same positions, but staggered on
the different faces of the cells. This means the arrays for
the different components have different dimensions ((V, +
1)XNyxX N, Nyx (Ny+1)x N, and Ny X Ny x (N, +1))
and different offsets from the origin. Finally, the MAC grid
is actually storing rwo instances of the velocity field: @ and
u*, and because these are both needed to compute the velo-
city update to the particles by the FLIP algorithm, we need
to be able to interpolate on one or both of these.

In a naive implementation, we might end up with a total
of 90 different branches to determine what kind of interpol-
ation we need to perform on what values. Since the actual
interpolations are only a few flops, the runtime of an inter-
polation call is dominated by the logic required to determine
what cell the given point is in, which kind of interpolation
we should perform, and which data (array indices) to use.

In the baseline implementation, most of the branches
were laid out manually, but inefficiently and interspersed
with many function calls. The resulting code was over 600
lines long, and due to the large amount of code duplica-
tion, hard to optimise or maintain. We opted to rewrite the
interpolation routine from scratch, adopting the following
strategies to improve performance.

Automatically-inlined methods. The linear, bilinear
and trilinear interpolation kernels were defined in header
files and with the inline compiler hint. This allows us to
avoid duplicating their code dozens of times, while allowing
the compiler to inline them and maximize performance. To
confirm that the compiler was indeed inlining the methods,
we tried inlining them manually, and observed no change in
performance.

Template argument for grid selection. The template
argument grid_name was introduced to allow the caller to
select which velocity component (u, v, or w) to interpolate
on. Combined with constexpr, this allows us to perform a
certain amount of the logic at compile time, e.g. to determ-
ine grid dimensions and offset, and significantly reduce the
number of branches that need to be considered at runtime.

Template argument for multiple interpolation. In prac-
tice, we will either want to interpolate on just the velocity
field « (as is the case in the advection substep), or on both @
and ™ (as is the case in grid-to-particle projection). Since
we know that @ and ©* have the same dimensions and grid
positions, we know that a given point will lie in the same
cell for both grids. This means we can use the same indices
for interpolating on @ and «*, which will spare us significant
overhead (recall that an interpolation call’s runtime is dom-
inated by index computations, not actual interpolation). By
introducing a template argument interpolation.mode,
we can again decide at compile time whether we want to
interpolate on one or both grids, and coalesce two interpol-
ation calls on « and @* into one.

Conclusion. As outlined in Section 4, these optimisa-
tions greatly improved the performance of the particle ad-
vection and grid-to-particle projection substeps. The code
complexity was also significantly reduced, with almost 300
fewer lines of code. Finally, we also considered vectorizing
interpolation calls with SIMD instructions. However, given
the high amounts of branching that still remains, vectorising
the full routine would be difficult and of limited potential
gain due to the low overall footprint of interpolation over
the whole FLIP algorithm. An attempt was made at vec-
torizing just the trilinear interpolation kernel, however no
performance gain was observed.

3.4. Particle-to-grid (v1.5)

For small and medium problem sizes, the particle-to-grid
routine is comparable to the pressure correction substep in
terms of runtime. Thus representing one of the main bottle-
necks of the FLIP algorithm.

Manually inlined functions. The baseline implement-
ation makes use of multiple functions to encapsulate the
subroutines needed for the projection of particle velocities
onto the staggered grid. Due to the velocity components
being stored on cell interfaces the velocity fields u, v, and
w have slightly different dimensions. For this reason, three
versions for each subroutine were provided, each tailored to
a different velocity field. In the optimised version, all the
function calls were manually inlined, allowing to reduce
code duplication, remove redundant computations, and in
some cases enabling scalar replacement. Additionally in-
lining functions enabled fusion of some of the triple-nested
loops present in the routine.

Boundary cells. To cope with the different dimensions
of the velocity components u, v, and w, a large amount
of branching and conditionals to avoid memory under- and
overflows are needed, which imply overheads and may hinder
compiler optimisations. However, the checks used in the
loop responsible for the accumulation of velocities on cell
interfaces were successfully moved outside the loop body,
allowing for a more efficient treatment of inner cells. In
other words, branching for boundary cells takes place out-
side the loop and a more efficient routine (i.e. free of unne-
cessary conditionals) is executed for particles contained in
the interior cells of the computational domain.

In the end, these modifications enabled better optimisa-
tions from the compiler and were responsible for the main
performance gains for the particle-to-grid substep.

Vectorization. At each timestep, the particle-to-grid
routine iterates over each particle and retrieves the cell in

which it is contained. Subsequently, it accumulates the weighted

particle velocities onto a neighborhood of cell interfaces
within a certain threshold. Unfortunately, at each timestep
the order of the particles on the grid is unknown and (likely)
different from the previous timestep due to the advection of
particles. Moreover, the number of particles contained in
each cell is not guaranteed to be constant. For these reas-
ons, the accumulation loop which represents the most com-
putationally intensive part of the particle-to-grid substep, is
not prone to vectorization. However, the less intensive loop
responsible for normalisation of the accumulated velocities
was successfully vectorized using AVX2 intrinsics, result-
ing in a slight performance gain.

3.5. Pressure Correction (v1.6)

The bulk of the computational effort is due to solving the
linear system of equations associated with the Poisson equa-
tion (5). The original implementation used the ICCG solver
provided by the Eigen library [3]. In order to achieve spee-
dup, we took took advantage of the specific characteristics
of our problem by implementing our own ICCG solver. The
algorithm is detailed, along with some possible avenues of
optimisation, in [4].

Original: Sparse matrix construction. The original
implementation rebuilt the matrix A for each timestep, which
entailed iteratively adding triplets of the form (row_idx,
col_idx, value) and then compiling the matrix into a
Compressed Sparse Row (CSR) format. Each non-zero ele-
ment of A is specified via a triplet using 2 - S;,,¢ + Sdouble =
16 B, i.e. half of the memory usage is due to specifying the
location of the entry and ultimately remains wasted due to
the regular structure of the matrix. There are 6 Ny Ny N, +
O(NyNy + NyN, + NyN,) =~ 6NNy N, non-zero entries
in A, where Ny, Ny, N, denote the number of cells in z,
y and z dimension, respectively. At a subsequent stage
in constructing the sparse matrix, A will be converted to

CSR format. Nonetheless, the triplets have to be written to
memory first. The size of this triplet data structure can be
bounded by s4 uip < NxNyN, - 96B. After conversion to

CSR format, the matrix is stored in s 4 csr < NxNyNZ(Gsdm,,bleJr

7sint) = NxNyN, - 76B. Due to the way the creation of
the matrix was implemented, specifying the values A;; and
Aj; together, there is necessarily an additional overhead in
the Eigen method SparseMatrix::setFromTriplets,
which in any case reads the list of triplets at least twice,
according to the Eigen documentation.

Custom solver. Many of these performance issues could
be effectively addressed by iterating directly over the CSR
data structure and only changing the relevant entries. Even
so, six out of the seven potentially non-zero entries (those
corresponding to the neighboring cells) in each row are al-
ways either 0 or —1, resulting in a significant amount of
memory being wasted by using double-precision floating
points values to represent binary values.

It is clear that the generic solver provided by the Eigen
library is severely limited in terms of performance on this
restricted problem: as illustrated in Algorithm 1, a generic
solver needs to be able to perform arbitrary matrix-vector
products with sparse matrices, and — as explained — needs
to store these matrices in a comparatively wasteful generic
sparse matrix format. We therefore implement a custom
ICCG solver in order to overcome these limits. Our solver is
no longer generally applicable, but is now inseparable from
the problem and even our concrete FLIP implementation.

Simplified Representation. By opting to store only the
diagonal of the matrix explicitly, with all other values being
computed at runtime, we are able to decrease the memory
for storing A to one double per cell, or s 4 giag = SNy Ny N, B.
The elements in the sub-diagonals and super-diagonals are
inferred directly from the simulation data structures, using
the cell index (to identify boundary cells) and an array in-
dicating existence of fluid particles within each cell. This
resulted in a significantly decreased use of memory, with
an associated improvement in performance. Additionally,
since the diagonal of A remains unaffected by the fluid, we
can compute it during initialization and need not update it
anymore.

Free-falling fluids. When unconstrained by boundary
conditions (i.e. in free fall), the velocity field within the
fluid is divergence-free. By using the solution to this trivial
case, p = 0, as a starting point, situations with low, non-
zero pressures are approximated within few conjugate gradi-
ent (CG) steps and trivial cases are solved immediately.

Blocking of app1yM. The forward and backward substi-
tution steps in the applyM subroutine shown in Algorithm 2
are seemingly strictly sequential, since each computation
of an element of ¢ depends on preceding elements. How-
ever, due to the three-dimensional nature of the problem, the
boundary conditions break the dependencies between sub-

Algorithm 2 Application of preconditioner M

1: procedure APPLYM(r)
2: fori < 1:N,,j« 1:Ny, k< 1:N.do

3: if cell (i,j,k) is fluid then

4 Qi < Mijr (Tij e+ Mio1 4k Gi—1,5,6+
M1k G-+ Mijr—1-Gijk—1)

5: end if

6: end for

7: fori« N,:1,j« Ny:1,k< N,:1do

8: if cell (i,j,k) is fluid then

9: Ziggk < Mi i (i + Mijk - Git1,5k +
M k- Gij+16 + Mgk Qijkt1)

10: end if

11: end for

12: return z

13: end procedure

sequent cells that lie at boundaries. Therefore, several cells
can be computed concurrently, as explained in [5], where
the authors exploit this to implement a parallelised modi-
fied ICCG algorithm on a GPU.

Superscalar processors allow a similar approach to be
taken to make use of instruction-level parallelism (ILP). This
resulted in no speedup in our tests. We attribute this to the
circumstance that our implementation is already memory-
bound (c.f. Section 4). As the computation units of the CPU
are not being exhausted, enabling more ILP is not expected
to improve performance. On the other hand, this optimisa-
tion entailed decreasing the effective operational intensity
by accessing the memory in a less structured manner, sug-
gesting lower performance on an already memory-bound
code.

3.6. Pressures AVX (v1.7)

Multiple calculations done in the pressures solver are slight
modifications of the scalar product and hence really prom-
ising for vectorisation. The different calculations were packed
into separate kernel functions which were optimised indi-
vidually. In order to determine the optimal number of accu-
mulators the following computations were conducted: the
gap of Fused Multiply-Add (FMA) instructions on the Intel
Skylake architecture is 0.5, meaning that 2 FMA instruc-
tions can be issued per cycle. In combination with a latency
of 4 cycles we calculate the optimal number of accumulat-
ors to be 8. As each Advanced Vector Extensions (AVX)
vector is able to hold 4 doubles, the loops were unrolled 32
fold. Some of the calculations involve returning the max-
imum value computed. This was done by increasing the
number of specialized kernel functions to include versions
that use combinations of other AVX instructions such as
mm256_max_pd and mm256_permute_pd in order to find

the maximum efficiently. Finally, all arrays that were passed
to the kernels were memory aligned to further improve per-
formance by using aligned loads.

4. EXPERIMENTAL RESULTS

In this section, the runtime improvements obtained by each
optimisation step will be shown. Additionally, the perform-
ance behaviour of each substep of the FLIP algorithm will
be studied with the aid of performance plots and the roofline
model.

Experimental setup. As aforementioned, the target ar-
chitecture of this project was Skylake. All benchmarks and
tests were performed on an Intel Core i7-6700HQ CPU locked
at 2.6GHz single-core (128KB L1, IMB L2, 6MB L3).

For compilation the gcc compiler was used with the fol-

lowing flags: ~-Ofast -march=native -mfma -std=c++17.

A variety of flags were tested to select this optimal combin-
ation.

Runtime. The histogram below shows the improve-
ments in average runtime for a single FLIP step thanks to
the different optimisations explained in Section 3. The con-
tribution from each FLIP substep to the total runtime is
highlighted with colors to help identifying the most time-
consuming routines.

The timings shown in Fig. 1 were produced by bench-
marking a “dam-break” simulation using 800 320 particles
in a 240x80x40 grid.

1e10 Runtimes for benchmark 'benchmark-2-3'

particle_to_grid
apply_pressure_correction
grid_to_particle
advance_particles
compute_mesh

Average runtime [cycles]

vl.l v1l.2 vl.3 v1l.4 v1l.5 v1l.6 v1.7
Optimization stage

Fig. 1: Runtime (in cycles) of each optimisation stage. Note
that some FLIP substeps are omitted due to their very small
footprint.

Revised particles data structure (v1.3). This led to a
more efficient use of the available bandwidth, better spatial
locality, and enabled better optimisations from the compiler.
The impact of these optimisations is visualized above (op-
timisation stage v1.3). Not all FLIP substeps are impacted

equally by changes to the particle representation; in particu-
lar, the pressure correction step does not use particles at all.
The most significant improvement is in the particle-to-grid
substep; for the benchmark case represented in Fig. 1, we
observed a 3.2x speedup in the particle-to-grid step, and a
1.8x speedup overall. It is worth noting that no other optim-
isations were performed at this stage in the particle-to-grid
step, only substitution of the particles data structure.

Rewrite of the interpolation routines (v1.4). The particle

advection step had a speedup of 3.15x. The grid-to-particle
step interpolates on both « and #*, so its observed speedup
of 5.9x is almost twice as much, since it benefits from the
multiple-interpolation template parameter.

Optimisation of the particle-to-grid routine (v1.5).
Explained in Section 3.4, this yielded a further 3.1x spee-
dup of the substep (i.e., adding this to the speedup achieved
in v1.3 a total 9.9x speedup was achieved for the particle-to-
grid substep) and a further 1.4x speedup overall. It is worth
pointing out that the particle-to-grid substep is one of the
main bottleneck of the algorithm, as shown in the baseline
column (v1.1) in Fig. 1, thus its optimisation was of major
importance and even little improvements had a positive tan-
gible impact on the overall performance of the algorithm.

Pressure correction substep (v1.6 and v1.7). This sub-
step is the main limiting factor in terms of performance of
the algorithm, particularly for larger simulations, due to its
high memory requirements and higher asymptotic complex-
ity. We achieved a 4.9x speedup over the previous Eigen-
based implementation, by exploiting knowledge of the un-
derlying problem.

Overall a 7.6x speedup was achieved over the baseline
implementation for the benchmark shown above. However,
it is worth mentioning that for our largest simulation, using
6 272 640 particles, a higher speedup of 9.9x was achieved.
This could be attributed to the improved scaling of the num-
ber of memory operations with increasing problem size in
the optimised pressure solver, leading to greater differences

in performance for larger simulations compared to the baseline.

Roofline. The roofline plot in Fig. 2 illustrates the
performance achieved by the final optimised version of the
FLIP algorithm and its difference to the peak performance
of the machine, i.e. Skylake architecture supporting 2 FMA
operations per cycle and 256-bit SIMD vectors.

It can be observed that the optimised pressure correc-
tion step is still memory bound, even though the memory
requirements were greatly reduced as explained in Section
3.5. However, it is worth pointing out that the current imple-
mentation approaches the roofline for the measured band-
width [6], meaning that further optimisations should focus
on increasing the operational intensity of the routine. In the
end, to achieve a better performance, a more memory ef-
ficient sparse linear solver would have to be developed to
beat the current ICCG, which is already considered one of

Roofline plot
25 Performance [flops/cycle]

X Particle-to-grid ® Grid-to-particle
¥ Pressure correction + Advance particles Vectorized roofline

23 e
-
-
-
-
Scalar roofline
@o&i\b S
21 &e\\’ ,\\wb\\ X
5 >
N
°
271 +
v
273 ¢ T T T 1
274 272 20 22 24

Operational intensity [flops/byte]

Fig. 2: Roofline plot with points for the most computational
intensive FLIP substeps of the optimised version. Note
that two different memory rooflines are shown: one for the
theoretical bandwidth and a second one for the bandwidth
measured by the STREAM benchmark.

the best choices for this specific problem [4].

On the other hand, the particle-to-grid routine lies on
the compute bound side of the roofline plot, meaning it is
less memory intensive. In this case, only half of the (scalar)
peak performance was reached, probably due to the over-
head caused by the large amount of conditionals required in
the routine to avoid invalid memory accesses.

In the middle, but still on the memory bound side, lie
the grid-to-particle and particle advection substeps, which
are heavily dependent on the optimised velocity interpola-
tion routines explained in Section 3.3, thus they are very
similar in terms of operational intensity. Similarly to the
particle-to-grid substep, for both grid-to-particle and advec-
tion the peak performance was not reached due to the high
number of conditionals present in the interpolation routine
to distinguish between internal cells and cells on the faces
and edges of the cubical domain, where trilinear, bilinear
and linear interpolation should be performed, respectively.

It is interesting to point out that the grid-to-particle sub-
step achieves a better performance than the advection sub-
step, even though the bottleneck of both is the interpolation
routine. This difference is explained by the fusion of the
interpolation for the velocities @ and the intermediate ve-
locities #* in the grid-to-particle routine, which halves the
amount of branching overhead.

In conclusion, these results show that little more per-
formance could be gained in the pressure correction substep
without changing the sparse linear solver.

Furthermore, the performance of the main components
of the FLIP algorithm are limited by overhead due to branch-
ing inside loops. This could be mitigated by using a “ghost

cell” approach for the boundaries, at the cost of some addi-
tional memory usage.

Performance. The performance plot in Fig. 3 shows
some quite interesting behaviours of the different substeps
of the algorithm.

Performance plot for optimization stage 'v1.7'

—8— particle_to_grid
~¥- apply_pressure_correction
--M- grid_to_particle

— advance_particles

2.04

1.5

1.04

Average performance [flops/cycle]

0.0

511 o13 515 517 219 521 223
Number of cells [-]

Fig. 3: Performance plot at optimisation stage v1.7 for the
dominant FLIP substeps.

Firstly, it can be observed that the performance of the
particle-to-grid substep increases with the increasing prob-
lem size. Normally, we would expect a flat performance
line with drops corresponding to the L1, L.2, and L3 caches
being filled. This unusual behaviour could be explained by
the different treatment of boundary and internal cells in the
particle-to-grid routine, where the loop accumulating velo-
cities for internal cells is free of unnecessary conditionals
and more efficient than the one for boundary cells. With the
increasing problem size, the ratio of particles contained in
inner cells to those in boundary cells also increases, mean-
ing that the larger the simulation the more times the efficient
accumulation loop is executed compared to the slower loop
for boundaries. For larger simulations (not visible in the
plot, due to the high requirements in terms of memory and
time of such a simulation) the performance of the routine
will plateau to a constant value, either limited by the peak
performance of the machine or, more likely, by the perform-
ance of the inner cells accumulation loop.

Looking at the performance of the pressure correction
step, we notice a drop between 2'7 and 2'? cells. This is due
to the L3 cache being filled by the problem size. To verify
this, let us estimate the maximum problem size that could
fit into L3 cache (for the pressures substep). The pressure
correction substep requires 3-8 B = 24 B per cell, since for
each cell three doubles are required for the pressure correc-
tion routine: one entry of the diagonal of matrix A, one of
the r.h.s. vector d and a last one for the pressures solution
vector p. Based on this, we conclude that our 6MB cache

(b) Optimised implementation, 768,000 grid cells

Fig. 4: Comparison of visual quality attainable in an equal
amount of runtime, ‘“dam-break” scenario.

. . 106
can contain a problem size of about S12B ~ 218 cells,
which confirms our suspicions.

Finally, it is important to point out that a performance
drop due to L3 cache overflow is only clearly visible in the
pressure correction substep, due to its memory boundedness
and its proximity to the peak performance roofline com-
pared to the other kernels.

5. CONCLUSIONS

By performing single-core optimisations on a FLIP imple-
mentation, we were able to achieve speedups of 7.6x up to
9.9x on common problem sizes, while significantly redu-
cing peak memory usage, enabling much larger-scale simu-
lations on existing hardware. Using efficient data structures,
we were able to achieve performance within a factor of two
of the hardware performance bounds. Using template argu-
ments to specialise the interpolation routines to each grid
type, thus enabling additional compiler optimisations, res-
ulted in substantially reduced runtime overhead due to in-
dex computations. By streamlining the inner loops of the
particle-to-grid step, we obtained 3.1x speedup on this sub-
step. By implementing an optimised and vectorized ICCG
solver tailored to our problem structure, we were able to out-
perform the high-performance general-purpose implement-
ation provided by the Eigen library by a factor of 4.9x. Our
optimised implementation allows for simulations of much
higher quality in comparable time, as illustrated in Fig. 4.

6. CONTRIBUTIONS OF TEAM MEMBERS
(MANDATORY)

Christoph. Timing methods. Level-set method optimisa-
tions (see Section 3.1, equal contributor). CG pressure solver
(see Section 3.5; implementation, scalar optimisations). Non-
beneficial optimisations attempted: blocking of forward &
backward substitution in pressure solver.

Sean. Design and implementation of new particles data
structure (see Section 3.2). Rewrite of the interpolation
routines (see section 3.3). Work on benchmarking: design-
ing, running and plotting. Attempted some additional op-
timisations: particle sorting, particle cell index caching.

Felix. Level set optimisations (see Section 3.1,equal
contributor), CG Pressure solver (general outline and vec-
torisation)

Mikael. Integrated the new particles data structure in
the FLIP methods. General optimisations (scalar replace-
ment, strength reduction, replaced getters and setters with
direct access, removed Eigen data structures) on all FLIP
methods except the pressure correction and surface recon-
struction substeps. optimised the particle-to-grid routine
(see Section 3.4) and less intensive substeps (application of
external forces and boundary conditions). Cost analysis and
roofline plot. Validation system using netCDF.

7. REFERENCES

[1] William E. Lorensen and Harvey E. Cline, ‘“March-
ing cubes: A high resolution 3d surface construction
algorithm,” 1987.

[2] Alec Jacobson, Daniele Panozzo, et al., “libigl: A
simple C++ geometry processing library,” 2018, ht-
tps://libigl.github.io/.

[3] Gaél Guennebaud, Benoit Jacob, et al., “Eigen v3,”
http://eigen.tuxfamily.org, 2010.

[4] R. Bridson and M. Miiller-Fischer, “Fluid simulation:
Siggraph 2007 course notes,” in SIGGRAPH 07, 2007.

[5] Jiaquan Gao, Bo Li, and Guixia He, “Modified in-
complete cholesky preconditioned conjugate gradient
algorithm on gpu for the 3d parabolic equation,” in
Network and Parallel Computing, Ching-Hsien Hsu,
Xiaoming Li, Xuanhua Shi, and Ran Zheng, Eds., Ber-
lin, Heidelberg, 2013, pp. 298-307, Springer Berlin
Heidelberg.

[6] J. D. McCalpin, “STREAM Benchmark,” ht-
tps://www.cs.virginia.edu/stream/, 2013.

