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Abstract

The focus of this project is the cost-optimal design of Battery and Hydrogen En-
ergy Storage Systems (BESS/HESS) for peak shaving the demand resulting from
Battery-Electric Vehicle (BEV) fast-charging at a highway rest stop. To this end, a
MATLAB simulation framework is implemented along with Simulink models for
the simulation of the Energy Storage Systems in question. Finally, the simulations
are evaluated for a variety of scenarios to determine the cost-optimal design of

BESS/HESS peak-shaving installations.
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Chapter 1

Introduction

In this report we will consider the scenario of a highway rest stop equipped with
fast-charging stations for battery-electric vehicles (BEV). A single BEV can draw up to
250kW when fast-charging: it is easy to imagine how having multiple fast-charging sta-
tions available could quickly lead to very high peak loads, especially since customers
tend to cluster in the afternoon and evening time slots, rather than being distributed
evenly over the 24 hour cycle.

Figure 1.1 illustrates such a scenario at a highway rest stop in Switzerland; the most
intensive week of 2019 already tested the operational limits of the local transformer

I 30% BEV (synthesized)
N 2019

AC Power [MW]

0 1 2 3 4 5 6 7
Time [days]

Figure 1.1: Power draw at a highway rest stop in Switzerland during the most energy-intensive week of 2019
(orange) and extrapolated to a potential future scenario with a 30% BEV traffic share (blue) [1].
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station, and as the share of electric vehicles increases, higher capacities will most likely
be required.

The primary goal of the peak-shaving techniques explored in this report is to reduce
the peak loads of the given demand profiles in favour of a more uniform power con-
sumption. From the point of view of the utility companies, this reduces the strain on
the electricity distribution and generation infrastructure, making more efficient use of
the current capabilities and potentially improving the stability of supply. From the
perspective of the highway rest-stop operator, this reduces operational expenses in the
form of electricity bills.

1.1 Reducing operational expenses via peak-shaving

For the purposes of this work, the term “OPerational EXpenses” (OPEX) refers to the
electricity bills experienced by the highway rest stop in question. These are subdivided
into multiple components, two of which we will take into account for this project:

Energy charges are calculated in terms of CHF/kWh, and tax the total amount of
energy consumed by the station. This corresponds to the area below the power
graph 1.1.

Demand charges are calculated in terms of CHF/kW /month, and tax the peak power
draw (averaged in 15-minute time windows) reached over the course of the
month. This corresponds to the highest peak of the power graph 1.1.

Demand charges are introduced by utility companies to incentivise consumers to bet-
ter distribute their power consumption, since, as previously mentioned, lower peak
loads lead to lower requirements on distribution and production infrastructure.

Figure 1.2 compares two power profiles with nearly identical total energy consump-
tion, but differing OPEX. The peak-shaved power profile (orange overlay) has signifi-
cantly lower demand charges, since its peak is lower than the baseline (shaded blue).
It makes up for the lower consumption at peak hours by consuming more power
overnight.

Such peak-shaving can be achieved by installing an Energy Storage System (ESS) on-
site. This can be pre-charged when demand is low, and used to offset some of the load
when demand is high, effectively lowering the peak power demand. The larger the
storage and power capacities of the ESS, the lower the demand peaks can be shaved.

Any such ESS will naturally require an up-front investment which for the purposes
of this work makes up the “CAPital EXpenses” (CAPEX). This naturally introduces a
trade-off: the larger the ESS capacities, the more we could potentially reduce our ex-
pected OPEX over the lifespan of the installation, but we must make a larger up-front
investment (CAPEX). The cost-optimal CAPEX/OPEX trade-off depends on several
factors such as efficiency and physical dynamics of the ESS in question, cost of compo-
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Figure 1.2: Comparison of a peak-shaved power profile versus baseline. The base power profile (shaded

blue) is the most energy-intensive week of 2019. The peak-shaved profile (shaded orange) has the same total
energy consumption, but lower demand charges.

nents for the ESS, electricity costs, power demand profiles we expect, degradation of
the ESS infrastructure and more.

These trade-offs are the main focus of this project. In particular, we will be considering
two ESS options: a Battery ESS (BESS) and a Hydrogen ESS (HESS).

1.2 Hydrogen Energy Storage System

While the concept of a battery storage system is fairly intuitive, the same may not be
true about a Hydrogen-based system. Figure 1.3 illustrates the fundamental compo-
nents of any HESS:

Electrolyser: during charging phases, an electrolyser is used to separate water into
hydrogen and oxygen gases.

H; tank: the hydrogen (and possibly oxygen) gas is subsequently stored in a pres-
surised tank.

Fuel Cell: finally, during discharging phases the H» is recombined with oxygen (either
from storage or from the atmosphere) via a Proton Exchange Membrane (PEM)
fuel cell, producing electricity.

A HESS has a lower round-trip efficiency than a battery-based system; however, it
can scale to much larger storage capacities since the storage medium (H; tank) is
significantly cheaper per kWh of installed capacity when compared to battery banks.
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Figure 1.3: Overview of the components of a Hydrogen Energy Storage System (HESS). lcons from
stock.adobe.com under non-commercial license.

The comparison of BESS and HESS systems in different use cases is another focal point
of this project.

1.3 Previous works

The topic of this project has been tackled in several previous Semester Projects at
the Paul Scherrer Institute. R. Lehner focused on identifying the bottlenecks in the
utility infrastructure, developed synthesised demand profiles, and implemented ba-
sic Simulink models to simulate both battery and hydrogen storage systems [2]. S
Renggli focused on the synthesis of demand profiles based on real-world data and ex-
trapolation into future scenarios [3]. Subsequently, M. Heer approached the question
of optimal design of a BESS/HESS system by formulating mathematical optimisation
problems [4].

Each approach had its limitations, however. The code base of the first two projects
grew unwieldy, which limited its reusability and the reproducibility of the results.
Meanwile, Heer’s optimisation approach [4] was limited by computation times, as the
problem formulation inevitably lead to rapidly increasing computational complexity.
This prevented the study of longer time horizons. Furthermore, the need to formulate
the problem as a mathematical optimisation problem limited the complexity and ease
of extension of the physical models.

The present project sets out to improve on the limitations of previous projects while
building on the existing knowledge base and resources on the topic.

1.4 Goals of this project

Having established the necessary background and context, we are finally in a position
to formulate the primary goals of this project:

¢ Implement a structured code framework, taking into account possible future
projects based on the same code base;
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Structured management of inputs and outputs for better reproducibility of re-
sults;

Re-implement the existing models within the new framework;

Implement some improvements to the existing models, particularly with regards
to the BESS physical simulation;

Allow for larger simulations with longer time horizons while containing compu-
tation times;

Finally, reproduce the results of previous projects by using the new code base
verify the results and to propose cost-optimal designs for a BESS and a HESS.






Chapter 2

Framework architecture design

In this chapter we will focus on the design and implementation of the code framework.
We will begin by looking at the design requirement definition and then move on to a
high-level overview of the final framework. A more detailed user guide to the code
can be found in Appendix A.

2.1 Design definition

Design requirements

For a design proposal to be accepted, all requirements must be fulfilled:
1. Simulations must be easily reproducible and re-runnable.
2. Simulation parameters and inputs must be easily modifiable.
3. It must be easy to add new simulations and modify existing ones.

4. Each simulation run must return a “result structure” containing all necessary
information to understand how the simulation results were derived.

By “easy” we mean that a user with basic programming knowledge and no familiar-
ity with the software architecture should be able to carry out modifications without
disproportionate time investment.

Design goals

A design proposal should strive to include the following additional design goals, or at
least be open to their addition:

1. New simulations should be able to incorporate parts of existing simulations.

2. Simulations should clearly state their required inputs and their outputs.
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3. It should be possible to run an automated grid search, i.e. re-run the same
simulation multiple times with varying input parameters.

4. Such grid searches should be executable in parallel, i.e. each simulation instance
running in a separate thread or process.

5. Post-processing of simulations results (e.g. generating plots, excel files, ...) should
be decoupled from actual simulation.

6. The code should be well-documented.

Language choice

The framework was implemented in MATLAB. The primary reason for this choice is
that it allows the use of Simulink models in simulation, which significantly lowers the
barrier to entry for future students wanting to build upon the existing framework.

Viable free and open-source alternatives include GNU Octave, Python, Julia, or C++.
These could offer improved performance and a better programming environment,
however, at time of writing, there is no viable alternative to Simulink, which would
force the users to “manually” implement the physical models in code.

2.2 Framework overview

Figure 2.1 gives a high-level overview of the implemented framework. The information
flow when executing a typical simulation is as follows:

Simulation Runner

1. A simulation runner reads the simulation inputs from
disk into a well-defined data structure.

2. The input data structure is passed to one or more sim-

T T ulation instances.

. . 3. Each simulation executes one or more models in se-
Simulation quence, adding the outputs of each model to the data
/v /v structure.

4. Each simulation then passes the resulting data back

Models up to the simulation runner, which writes the results

to disk and returns them to the calling script.
Figure 2.1: Overview of informa-
tion flow in the ESPS framework.

This modular structure maintains a high degree of flexibility: each simulation runner
can work with any simulation, and each simulation is agnostic of the inner workings
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of the models it calls. This means a developer can implement a new simulation, and
then run, for example, a grid-search without needing to re-implement the grid-search
functionality.

At the same time, the framework imposes some constraints: each model must declare
all of its inputs and outputs, and each simulation must declare the models it calls. This
allows for better transparency to the end-user, and allows the framework to handle the
input and output data structures.

Finally, the outputs of a simulation run are returned in a well-defined data structure,
which includes all of the information necessary to reproduce the results (i.e. all of the
inputs, outputs and metadata about the execution) as well as perform post-processing
operations such as data visualisation (plotting).

At time of writing, three simulation runners have been implemented: simplesimulationRunner,
which executes the given simulation once, GridsearchRunner, which runs multiple in-
stances of the given simulation with varying inputs, and parallelGridsearch, which

also runs a grid search, but runs each simulation in a separate MATLAB parallel
worker and therefore allows scaling to much larger searches.

2.3 Example usage

Listing 2.1 shows a simple example script which executes a parallel grid-search.

% Create an instance of the chosen simulation
sim = esps.simulations.SimEtaHESS () ;

% Create an instance of a simulation runner for our simulation
runner = esps.runners.ParallelGridSearch (sim);

% Read our input files
runner.readInputs ("unified_oneWeek. jsonc", "inputs/unified/");

O 0 N N U W N =

sy
(=}

% Sweep 10 values of the shavingAmount parameter from 0.2 to 1
runner.addSearchParam("shavingAmount", 0.2, 1, 10);

==
N =

o

% Run the simulation
runner.run() ;

el
N U1 = W

% Write the outputs to file
outDir = runner.writeOutputs () ;

== =
o ©®

% Fetch the results
outData = runner.getOutputData () ;

NN
= o

)

% Generate some plots
esps.post.GSFinancialPlots (outData, outDir, "HESS");

NN
W N

Listing 2.1: Example script using the ESPS framework to execute a 1-dimensional grid-search.






Chapter 3

Modelling approach

In this chapter, we will focus on the models used for the simulations and their imple-
mentation. Here the term “model” is being used somewhat loosely; by “model” we
mean a component of simulation within the code framework, which includes but is not
limited to physical simulation models. As a high-level summary, the most important
models used in the simulations in this report are the following;:

Peak-shaving algorithm: this is essentially an open-loop controller for the energy stor-
age system, which decides when the ESS should charge or discharge.

Minimum capacity algorithm: this algorithm is used to obtain an estimate of the ca-
pacity required for an ESS to be able to fulfill a peak-shaving plan.

Ideal ESS model: this model represents an “ideal” energy storage system, which has
no inefficiencies and therefore no waste. Its results were used to evaluate the
performance of more realistic systems.

BESS models: these models simulate the physical dynamics of a battery energy stor-
age system when tackling a given peak-shaving plan.

HESS models: these models simulate the physical dynamics of a hydrogen energy
storage system when tackling a given peak-shaving plan.

CAPEX/OPEX models: these calculate the CAPEX/OPEX of installing and operating
an ESS for a given time period.

11
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Figure 3.1: lllustration of the peak-shaving algorithm executed by an idealised ESS (with perfect efficiency).
The arrows denote the function of the shavingAmount and chargingAmount parameters.

3.1 Peak-shaving algorithm

Given a time-dependent power profile P : [t;; t,] — R™, the peak-shaving algorithm
is tasked with calculating a power set-point profile for the energy storage system. This
determines how much power an energy storage system should be drawing or dis-

charging such that the resulting power draw of the overall system has a lower peak
load.

The power set-point is effectively an open-loop control input up : [ts; te] — R. By con-
vention, we say that up(t) > 0 indicates charging of the ESS, and up(t) < 0 indicates
discharging. This leads to the following intuitive definition of the resulting power
P(t), which corresponds to the aggregate power flowing over the transformer station
supplying the fast-charging station:

P(t) := P(t) + Pess(up(t), P(t)), 3.1)

where Prgs(-,-) accounts for the real-world (or simulated) physical dynamics of a
concrete ESS. In the ideal case of a “perfect” ESS, we would have Pgss(up(t), P(t)) =

u p(t).
The algorithm described in this section is implemented in the peakshaving model in
the ESPS framework.

The shavingamount parameter a; determines the maximum power draw Py;e, we allow,
and represents a fraction of the distance between the average of P and its maximum.
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The chargingAmount parameter a, determines how much power P, we are allowed to
draw to charge the ESS, and represents a fraction of the upper target Py;gp:

_ 1 te
P= / P(t)dt, (3.2)
te - ts ts
Pyjgn = max P(t) — a; < max P(t) — P> , (3.3)
te(ts;te] tE[ts;te]
Prow = cPhigh- (3.4)

See Figure 3.1 for an illustration of the function of the shavingamount and chargingamount
parameters. The control input (power set point) is then calculated as follows:

Pyigh — P(t)  P(t) > Phign,
MP(t) = Plow - P(t) P(t) < Plow/ (35)
P(t) otherwise.

A value of s = 1 means we completely “flatten” the power profile from the top to
its average value, whereas a value of 0 means we perform no peak-shaving at all.
Conversely, a value of a; = 1 means we completely “flatten” the power profile from

the bottom to the upper target Pj;o;, whereas a value of 0 means we never charge the
ESS at all.

Note that this algorithm does not take into account the feasibility of the problem. If we
set the charging parameter a. too low, the ESS will not be able to store enough energy
and will run out during one of the discharging phases, resulting in higher demand
charges. Similarly, if we are too ambitious with setting a high value of the shaving
parameter a;, a situation may occur where it is simply impossible to store enough
energy during the charging phases to completely shave the peaks, no matter how high
we set ..

The effectiveness with which peak-shaving can be performed, as quantified by the
CAPEX/OPEX costs, depends on the exact dynamics and efficiencies of the ESS that ex-
ecutes it, the distribution of the power load P(t) as well as the various CAPEX/OPEX
unit costs, and is therefore difficult to predict a priori. Instead, in this work a grid
search will be executed over values of the parameters a; and a., which will allow us to
estimate the cost-optimal parameters for each ESS accounting for all of the aforemen-
tioned effects.

13
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3.2 Estimation of minimum required storage capacity

Given an ESS power set point profile up generated by a peak-shaving algorithm such as
the one described in the previous section, we wish to estimate the minimum required
storage capacity for an ESS to execute said power set points. We make the following
assumptions:

1. We have an ideal ESS, meaning an ESS with infinite power capacity (both charg-
ing and discharging), perfect efficiency, instant response to control input and no
limits w.r.t. rate of change of power throughputs.

2. The storage medium begins with 100% charge. This is a safe assumption for the
purposes of calculating the minimum required capacity, since if the ESS were to
begin with less than 100% charge, the limiting factor would not be the capacity
of the ESS but the availability of energy in charging phases, until we eventually
reach 100% charge.

We propose the following algorithm to calculate the minimum required energy storage
capacity E*.

Algorithm 1 Calculation of minimum required ESS capacity E*
T <« sort.asc {{zeros of up} U {ts, t.}}
E*,E* <0
fori =1 tolength of T do
E*« E°+ [} up(t)dt
E? + min(0, E?)
E* < max(E*, |E%|)
end for

Here, T represents a sorted list containing the start and end points t;_,t; of each
charge/discharge phase. These are either sign changes in up(t) or one of the bounds
ts, to of the domain. E* is the current estimate of the minimum required energy storage
capacity, which is updated at each iteration.

Finally, E* is an auxiliary variable representing the amount of energy required to bring
the storage system back to full charge. If the storage is already at 100% charge, its value
is zero; otherwise it is negative. Put differently, at any given point, E? is the integral of
all charging and discharging phases since the last time the storage system was at full
charge. Since our ESS must be able to accommodate all of the discharging phases, the
minimum required energy storage capacity is equal to the maximum magnitude |E*|
the ESS reaches over the course of its operations.

Algorithm 1 is implemented in the MinEsscap model in the ESPS framework.
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Figure 3.2: A possible ESS power set point profile. Negative values indicate that the ESS should discharge.

3.2.1 Proof of correctness

In the following we will focus on proving the correctness of Algorithm 1 for the prob-
lem stated above. We will use a process of induction.

Base case

Consider Figure 3.2, which represents a generalised power set point profile in simpli-
fied form. We have three distinct phases, with phases 1 and 3 representing a discharge
of the ESS and phase 2 a charging phase. Note that it follows from assumption 2
that the first phase is a discharge phase; if it weren’t, we could simply skip the initial
charging phase since we begin with 100% charge (and indeed this is what would occur
with Algorithm 1). Also, consecutive phases will always alternate in type (charge/dis-
charge), as otherwise they would be grouped into a single phase. Figure 3.2 is therefore
representative of every possible three-phase power set point profile.

We define the total energy E; (dis)charged over the course of phase i as follows:

i1

. / " (b, (3.6)
E i |Bi|. (3.7)

15
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We now have three principal scenarios with regards to the minimum required storage
capacity E*:

E; > Eq: the charging phase is sufficient to restore the ESS to full capacity before the
second discharging phase. This means the minimum required capacity becomes
E* = max(E;, E3). Stepping through the algorithm’s iterations we see how it
comes to the correct conclusion:

1. Ef = £y and Ef = E;.
2. E = min(0, E{ + E;) = 0 and E5 = max(E;, |E3|) = Eq.
3. E& = min(0, £3) = E5 and Ej = max(E3, |E4|) = max(E;, E3).

Ey > E; > Eg: if the charging phase does not fully recharge the ESS before phase 3,
then the two discharge phases become “coupled”. In this case however, since
E, > E3, we know that the minimum required capacity is actually E* = E;,
since the second discharge phase is effectively “nullified” by the charge phase.
Stepping through the algorithm’s iterations:

1. E¢ = E; and E = E;.
2. E§ = min(0, E + E;) = E; + E; and Ej = max(Ej, |E5|) = Eq.

3. Ef = min(0, E§ + E3) = £y + E» + E3 and E5 = max(E3, |E§|) = max(E;, |Eq +
Er + E3|) = Eq.

E1 > Ej; Es > E»: here we have a similar scenario as before, but because E; > E,, the
minimum capacity becomes E* = E; + E3 — E; = |E; + E; + E3|. Tt should be
clear that the algorithm’s iterations proceed as in the previous scenario, with the
only difference being that now E} = max(Ey, |E; + B> + E3|) = |E1 + Ex + E3).

This proves the correctness of the algorithm for any valid initial condition.

Induction step

Given that we have calculated the correct values of E; and E}, we wish to prove that
Algorithm 1 correctly calculates E; ; and E{ ;.

If the system is at full charge, i.e. if E} = 0, we are effectively tackling a new sub-
problem, independent of previous power set points. The final required capacity will be
the maximum between the capacities required for the individual sub-problems. There-
fore, given that the algorithm always updates E* with a maximum (max(Ej, Ef, ;)), we
can refer to the previous section for correctness of the algorithm in this scenario.

If Ef < 0, we have two scenarios, depending on whether k + 1 is a charging or dis-
charging phase:

Er 1 > 0: phase k + 1 is a charging phase, which means the required capacity should

not change. Indeed, the magnitude of the auxiliary variable will increase: |E{_ ;| =
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min(0, |E{ + Exy1|) < |E}f| — this means the estimated minimum capacity re-
mains the same too: Ef ; = max(Ej, |E{,,|) = max(max(E;_4,|E{|), |E{,q]) =
max(E;_,,|E{|) = E}.

Er1 < 0: phase k + 1 is a discharging phase. The auxiliary variable will be correctly
updated: Ef ; = min(0,Ef + Exy1) = Ef + Exiq. If after this update its mag-
nitude exceeds the previous required capacity, the optimal required capacity is
updated accordingly: Ef,; = max(E[, |E}_4|).

Having proven the correctness of Algorithm 1 for any valid initial condition, as well

as for the step k — k + 1, by mathematical induction it follows that Algorithm 1 is

correct.

O
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Figure 3.3: Overview of the IdealESS Simulink model.

3.3 Ideal ESS

In order to evaluate the performance of Hydrogen and Battery Energy Storage Systems,
we would like to establish a “best-case” scenario. Thus, the first physical model we
will look at is that of an “ideal” ESS which:

* has perfect efficiency when storing and releasing energy,

* has no limits on the power throughput when charging or discharging,
* has instant response time to control inputs,

* but has limited energy storage capacity.

In practice, the ideal ESS model gives us a lower bound on the OPEX we can achieve
with a given control input up. Any realistic ESS would have inefficiencies, which
translate to energy waste and increased energy costs. These inefficiencies can also
increase demand charges, since we risk running out of usable stored energy sooner
when discharging.

Figure 3.3 shows an overview of the Simulink implementation of this ideal ESS model.
The State of Charge (SoC) is a scalar value in the range [0;1] which indicates the
fraction of the total storage capacity that is currently being used. The energy limits are
imposed as follows:

0 SoC > 1 Aup(t) >
Press(t) = 0 SoC < 0Aup(t) <
up(t) otherwise.

0,
0, (3.8)

In other words, we cannot further charge the ESS if we are already at maximum charge
(SoC = 1) and we cannot discharge the ESS if the energy storage is empty (SoC = 0).

The ideal ESS described in this section is implemented in the 1dealEss model in the
ESPS framework.
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Figure 3.4: Overview of the SimpleBESS Simulink model.
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Figure 3.5: Overview of the SimpleBESS Simulink State of Charge model.

3.4 BESS physical simulation

This section will cover the physical modelling of Battery Energy Storage Systems.
There are currently two models implemented: the first, simpleBEss, is based on previ-
ous works [2], whereas the second, EtaBEss, was developed as part of this project and
features improved modelling of efficiency, operating constraints and available capacity
as a function of (dis)charge rate.

3.4.1 Simple BESS model

The simpleBEss is based on work by R. Lehner in a prior Semester Project at PSI [2],
and is similar to the ideal ESS model introduced in the previous section, with the
following modifications:

® simpleBESS has limited input and output powers, imposed with a saturation
filter;

¢ constant efficiency factors are introduced in the SoC model for charging and
discharging phases.
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Figure 3.6: Overview of the EtaBESS Simulink model.
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Figure 3.7: Overview of the EtaBESS Simulink State of Charge model.

3.4.2 BESS with improved efficiency modelling
The EtaBEss model improves on simpleBEss in the following ways:
¢ scaling of the power limits based on the State of Charge;
* efficiency modelling of power conversion electronics via look-up tables;

* modelling of internal battery efficiency dependant on the E-rate of the charge/dis-
charge process.

Power limit scaling

As the battery’s State of Charge approaches its maximum, the effective power with
which we can continue to charge it tapers off. Conversely, when the battery is al-

most completely discharged, the effective power we can continue to draw also drops
significantly.

EtaBESS models these effects by introducing look-up tables which dynamically scale
the maximum charge and discharge powers as a function of the current SoC of the
battery. Table 3.1 lists the values of the look-up tables as percentages of the maxi-
mum power limits (which are calculated as in simpleBEss). Intermediate values are
evaluated using linear interpolation.
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Table 3.1: Power limit scaling look-up tables in the EtaBESS model. Intermediate values calculated by
linear interpolation. Values provided by project supervisor.

SoC Charge limit [%] Discharge limit [%]
0 100 0

0.2 100 0

0.4 100 100

0.6 100 100

0.8 0 100

1.0 0 100

Table 3.2: Power conversion efficiency look-up tables in the EtaBESS model. Values provided by project
supervisor and based on empirical measurements. See Figure 3.8.

Power [%] Rectifier eff. [%] Inverter eff. [%)]

0 1 1
6.7 73.5 73.5
20 87.5 87.5
33.3 91.5 91.5
46.7 92 92
60 94.1 94.1
100 94.1 94.1

Power conversion efficiency

During charging phases, a rectifier is converting the incoming AC power to DC; con-
versely, an inverter converts DC to AC when discharging. These components cause
losses in the usable energy, and their efficiency varies depending on how much power
is being converted relative to the component’s maximum rated capacity.

EtaBESS models these effects by introducing look-up tables which evaluate the recti-
fier/inverter efficiency as a function of their maximum rated power. The resulting
efficiency then scales the power input/output to the battery.

Table 3.2 lists the values of the look-up tables, where the power value is a percent-
age of the maximum power rating of the component. The tables were resampled to
100 evenly-spaced values using piecewise cubic Hermite interpolation (PCHIP) before
use in simulation. The LUTs were then evaluated using the “Nearest” algorithm in
Simulink to improve the stability of the simulation.

Battery efficiency as a function of E-rate

An E-rate describes the rate at which a battery is discharged relative to its maximum
energy capacity [5]. An E-rate of 1h~' means that the discharge power will discharge
the entire battery in one hour. An E-rate of 2h~! means the battery will last thirty
minutes.
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Figure 3.8: Efficiency of AC/DC and DC/AC power conversion. See Table 3.2.
Table 3.3: Battery efficiency look-up tables in the EtaBESS model. Values based on [6] and interpolated

linearly. A value of 100% means the available capacity is 100% of the nominal capacity; this was translated
to efficiency in our model. See Figure 3.9.

E-rate [h '] Charge eff. [%]  Discharge eff. [%]

1.5 92 92
1 92 92
0.5 94 94
0.25 97 97
0.125 100 100

The efficiency with which a battery can be charged or discharged depends on the E-
rate with which it is charged or discharged. EtaBess models this with an additional
pair of look-up tables relating E-rate to efficiency. This efficiency is applied in series
with the efficiency of power conversion previously described. Table 3.3 lists the values
of the look-up tables, which are based on [6].

22



3.4. BESS physical simulation

© © o
EN o (o)

Battery efficiency [-]

o
N)

0.5 1 1.5
E-rate [h'l]

Figure 3.9: Internal battery efficiency as a function of E-rate. See Table 3.3.
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3.5 HESS physical simuation

In this section we will briefly cover the physical modelling of Hydrogen Energy Stor-
age Systems. As in the previous section, there is a simplerEss model which was
adapted from previous works [2], and a second version EtarEss which improves on
the simpler version.

3.5.1 Simple HESS model

Unlike the BESS models, which directly integrate the power input/output from the
storage system to calculate the change in state-of-charge, in a HESS model we must
first convert power to/from Hydrogen gas mass flow.

Electrolyser

The electrolyser consumes power to produce hydrogen gas. In simplertss, the mass
flow 1i1pp pry (1) resulting from power input up(t) is calculated as follows:

up(t) - NeLy - PH2

/ 3.9
Wi (3.9)

tip Ly () =

where gy = 0.65 is the electrolyser efficiency (including AC/DC power conversion),
pr2 = 0.0899kg/ Nm? is the normalised density of Hy gas and Wgo = 3kWh/ Nm? is
the energy density of H gas.

Fuel Cell

The fuel cell consumes hydrogen gas to produce electricity. In simplerEss, the mass
flow ti1pp e (t) the fuel cell draws from the tank to produce the required power output
up(t) is calculated as follows:

up(t) - pm2

’ 3.10
nec - Who (.10)

i, re(t) =

where 17rc = 0.65 is the fuel cell efficiency (including DC/AC power conversion). It is
worth noting that the power set point up is negative when the fuel cell is in operation,
and, accordingly, the resulting negative mass flow drains the tank.

H2 storage tank

The mass content of H, gas in the storage tank is simply calculated by integrating the
mass flow resulting from either the electrolyser or fuel cell over time. The pressure in
the tank is calculated using ideal gas relations:

RS,H2 : Tamb /.If

it (T)dT, (3.11)
Viank 0

pH2(t) = po +
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Figure 3.10: Efficiency curves of fuel cell (§pc) and electrolyser (gry) in the EtaHESS model.

where R pr = 4123.2 Ws/kg/K is the specific constant for Hy gas, T,,,,; = 300K is the
ambient temperature and Vj,, is the volume of the storage tank.

3.56.2 HESS with improved efficiency modelling

simpleHEss models the efficiencies of fuel cell and electrolyser as constant values. In
reality, their efficiencies can vary greatly depending on the power load on the compo-
nents. The EtarESS replaces the constant efficiencies in equations 3.10 and 3.11 with
look-up tables that express efficiency as a function of relative power load.

Figure 3.10 illustrates the values of the efficiency look-up tables used for fuell cell and
electrolyser.
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Table 3.4: Component prices for HESS and BESS.

Component Current (high) Future (low) Unit Sources
Battery storage 800 300 [CHF/kWh] [71, [8]
H2 tank 37 7.4 [CHF/kWh] [9]

Fuel Cell 1700 230 [CHE/kW] [10], [11]
Electrolyser 1000 300 [CHF/kW] [12],[13]

3.6 Calculation of CAPEX

Table 3.4 lists the costs of individual components of the battery and hydrogen storage
systems per unit capacity. Both current and expected future prices are reported.

3.7 Calculation of OPEX

In our scenario, the operational expenditures correspond to electricity costs. Of those,
the two primary components considered are energy charges, which depend on the to-
tal amount of energy consumed, and demand charges, which are based on the highest
monthly 15-minute-averaged power load:

t fe
OPEXgnergy = &+ Ce ;22 [ P(r)dr, (312)
e — Is Jts

P(t
OPEXpemand = €D * Cp - foPEX Z max ( )

nonths Month toonth

OPEX = OPEXgnergy + OPEXpemand- (3.14)

) (3.13)

Here, toppx refers to the time horizon over which we wish to evaluate the OPEX
costs, which may differ from the time horizon t, — t; of the physical simulation. Cr =
0.0739 CHF/kWh is the unit price of electrical energy [14] and Cp is the monthly
unit demand charge price. The latter will have values ranging from 6 CHF/kW /m to
30 CHF/kW /m depending on the scenario. P(-) refers to the aggregate power demand
(P(-) as defined in Equation 3.1) averaged over 15-minute time windows.

There is one additional aspect to the calculation of operational expenses, and that is
usage time (Benutzungsdauer, BD), which is calculated as follows [14]:

Total yearly energy [kWh]
BD = . Ad
Avg. monthly peak [kW] (3.15)

If the usage time is above the threshold Tgp = 3500h, the fees for energy and demand
change. This is implemented in our OPEX model with the eg and ep multipliers, the
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values of which are based on electricity pricing in Switzerland at time of writing [14]:

L 1 BD < Tgp,

€ = { 0.540 BD > Typ; (3.16)
L 1 BD < Tgp,

0= { 2122 BD > Tgp. (3.17)

Note that this method is based on the assumption that, as demand charges rise in
the future, the high-usage rates will remain proportional to the low-usage rates by
the same ratio. It remains to be clarified whether this is accurate but, as we will
see when discussing the results, this approach significantly limits the effectiveness of
peak-shaving techniques.
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Chapter 4

Discussion of results

In this chapter we will look at the simulations that were run using the new code
framework and models and analyse the results obtained.

Three scenarios were studied:
Scenario 1 uses real-world power data from a rest stop in Switzerland for 2019.

Scenario 2 uses only the most energy-intensive week from the 2019 dataset as the
input power profile.

Scenario 3 uses data from the same week as scenario 2, but extrapolated to a 30% BEV
share, which is meant to be representative of a future scenario.

Each dataset was provided by the principal project supervisor C. Peter.

4.1 Methodology

For each scenario, a grid-search was executed over the shaving amount («s) and charg-
ing amount (a.) parameters of the peak-shaving algorithm (see section 3.1), with val-
ues ranging from 0.2 to 1.0. CAPEX values were calculated as per section 3.6 for both
current (high) and future (low) component prices.

The resolution for this grid search was 30x30 (900 points) on scenarios 2 and 3. Sce-
nario 1, being significantly more computationally intensive, was evaluated at a lower
resolution of 28x28 (784 points) and took around 47.5 hours to simulate on a Ryzen
7 1700 8-core CPU, with 8 Matlab parallel workers. It is worth noting that such high
resolutions were only achievable by using the parallel grid search functionality of the
implemented framework; executing the same simulation sequentially would have re-
quired approximately 392 hours (16 days).

The physical simulations were run using the etaBess and EtaieEss models described
in sections 3.4 and 3.5 respectively. The initial state of charge was set to 20%, which
corresponds to the minimum value for both models.
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In a subsequent step, OPEX values were calculated by adding a third dimension to the
grid-search, for five values of demand charge prices ranging from 6 CHF/kW /month
(approximately representative of the current pricing in Switzerland) to 30 CHF/kW/-
month. Such high demand charge values could realistically be expected in the future,
as the transition towards renewable energies progresses, and have indeed already been
reached in some areas of the United States (California in particular) [2]. All OPEX re-

sults were scaled to a time horizon of 10 years (3650 days) with constant energy and
demand charge prices over time.



4.2. Scenario 1: power data from all of 2019
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Figure 4.1: Scenario 1: HESS (left) and BESS (right) relative cost heat-maps for a base demand charge of
30 CHF/kW/month and low CAPEX prices.

4.2 Scenario 1: power data from all of 2019

Figure 4.1 shows heat-maps visualising the relative cost of a BESS installation when
compared to no ESS installation (and thus unmodified OPEX costs). A value of 1
(green hue) means that installing and operating a BESS for 10 years costs the same
as operating the station without any peak-shaving for the same duration. Higher
values (warm colours) indicate that the BESS solution is more expensive, whereas
lower values (colder colours) indicate potential savings. Finally, a marker indicates
the lowest value, i.e. the cost-optimal solution for the given ESS, demand charge and
CAPEX values.

Note that in the interest of brevity, only certain parameter combination heat-maps are
shown in this chapter. Refer to Appendix ?? for a full list.

In general, higher values of the shaving amount parameter lead to lower demand
charge costs (and hence OPEX), but require a larger storage capacity, and so increase
the CAPEX of our installation. High values of the shaving amount also require higher
charging amounts to be beneficial: if we have a large storage capacity, but don’t pre-
charge it sufficiently to cover all of the peaks, we lose the benefit of peak-shaving, and
are left paying for the installation and higher energy costs (due to inefficiencies in the
ESS). For extremely high shaving amounts, it may not even be physically possible to
pre-charge the ESS sufficiently. Therefore, the exact location of the trade-off bound-
ary depends not only on the ESS dynamics, but also on the properties of the power
demand profile being used for the simulations.

Notice how the minimum in Figure 4.1b has a charging amount of 1: this is because
the BESS incurs no additional costs for increasing the charging amount, and so has
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Scenario 1 optimal costs (CAPEX high) Scenario 1 optimal costs (CAPEX low)
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Figure 4.2: Scenario 1 summary: costs of optimal solutions per ESS for varying demand charge values, low
and high CAPEX. Orange bars represent baseline OPEX (no peak-shaving), green bars are with BESS, and
blue bars with HESS. Each bar has three segments, from bottom to top: energy costs, demand costs, and
CAPEX.

no reason not to charge as much as possible. The CAPEX of the BESS are indeed
calculated based solely on the required capacity, which is affected primarily by the
shaving amount rather than the charging amount. This may seem counter-intuitive,
but is a direct consequence of how the minimum required ESS capacity is calculated
(see Section 3.2). The situation is different for the HESS, since higher charging amounts
require a larger electrolyser, which in turn increases the CAPEX of the installation.

Observe in Figure 4.1b the sharp discontinuity in costs for the BESS installation at a
shaving amount value of approximately 0.8. This is due to the usage time calculation
described in Section 3.7: higher shaving amounts lead to lower peak loads and higher
energy consumption (due to inefficiencies in the ESS), which overall produce higher
usage time values. When we reach a usage time of 3500 hours, we switch to the
modified tariffs, which in most cases produce higher costs.

The hydrogen system (Figure 4.1a) also features this discontinuity, however, it occurs
for lower shaving amounts, since the HESS has lower round-trip efficiency than an
equivalent battery system.

In general, the effectiveness of both peak-shaving systems is significantly limited by
the usage time policy, when evaluated as described in Section 3.7.

Figure 4.2 summarises the results for the first scenario. The “Baseline OPEX” bars
indicates the total OPEX costs we expect over a 10-year time horizon with no peak-
shaving installation. The bars for BESS and HESS indicate the costs of the cost-optimal
solution for each ESS. The term “cost-optimal solution” refers to the combination of
shaving and charging amounts which minimises the total costs. In other words, each
of the previously introduced heat-maps has a corresponding bar in figure 4.2.

As we would expect, higher values of unit demand charge prices lead to a more com-
petitive optimal solution for any ESS, since the financial benefit of peak-shaving is ac-
centuated. Similarly, lowering the component costs of an ESS installation (i.e. CAPEX)
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means we can afford larger installations, higher amounts of peak shaving and more
savings on OPEX.

In conclusion, we find that for this scenario:

* at current demand charges and component prices, neither BESS or HESS is cost-
competitive compared to the baseline costs;

¢ for higher demand charge values and current component prices, the BESS can
become competitive, but the HESS is still too expensive;

* the HESS can become competitive with lower component prices and higher de-
mand charge values, but is still outperformed by the BESS (albeit narrowly).
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Scenario 1: BESS (30 CHF/kW/m, CAPEX low) Scenario 2: BESS (30 CHF/kW/m, CAPEX low)
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Figure 4.3: Comparison of equivalent heat-maps from scenario 1 (left) and scenario 2 (right).

4.3 Scenario 2: most energy-intensive week of 2019

In this scenario, only the most energy-intensive single week of 2019 was used for the
physical simulations. The shorter time horizon makes for much faster simulations
(less than a minute, compared to the almost 40 minutes of scenario 1), but sacrifices
solution quality.

Figure 4.3 serves as an illustration of this difference in solution quality: it shows the
heat-maps resulting from a one-year (left) and a one-week (right) physical simulation,
with the same ESS, demand charges and CAPEX values. The one-week plot is visibly
more irregular; the optimisation surface has many more local minima and maxima
which are “smoothed over” by the longer simulation. The risk here is that one of these
local minima is mis-identified as a globally optimal solution which does not hold true
in long-term, real-world operation.

Figure 4.4 summarises the results for Scenario 2. In general, it paints a more optimistic
picture when compared to the previous scenario, as the data used was from the most
energy-intensive week of the year and therefore has higher total consumption and
peak loads than the average week of 2019.

However, it also highlights one of the aforementioned “local minima”: for low CAPEX
values and base demand charges of 6 CHF/kW /month, the optimisation finds a mini-
mum above the high-usage threshold, as highlighted by the fact that the energy costs
are lower than baseline. This minimum is not present in scenario 1 (Figure 4.2) and so
is most likely not representative of long-term operation.
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Figure 4.4: Scenario 2 summary: costs of optimal solutions per ESS for varying demand charge values, low
and high CAPEX. Orange bars represent baseline OPEX (no peak-shaving), green bars are with BESS, and

blue bars with HESS. Each bar has three segments, from bottom to top: energy costs, demand costs, and
CAPEX.
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Scenario 3: HESS (30 CHF/kW/m, CAPEX low) Scenario 3: BESS (30 CHF/kW/m, CAPEX low)
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Figure 4.5: Scenario 3: comparison of HESS and BESS for low CAPEX and 30 CHF/kW/month demand
charges.

4.4 Scenario 3: most energy-intensive week of 2019 with 30%
BEV share

In the third and final scenario investigated, a synthesised dataset was used — based on
the single week from the previous example, but extrapolated to a 30% traffic share of
battery-electric vehicles [1]. This produces much higher peak loads and overall energy
consumption. As a result, we would expect peak-shaving to perform better than in
previous scenarios, since there are more potential benefits. Furthermore, a hydrogen
system is expected so scale to these proportions better than a battery system, since a
hydrogen system can accommodate the significantly larger storage capacity at lower
prices.

Unfortunately, as exemplified by the heat-maps in Figure 4.5, the usage time policy
severely limits the amount of peak-shaving that can be effectively performed, since
the baseline usage time of the un-shaved power profile is also much higher. As a
result, both hydrogen and battery energy storage systems struggle to reach the break-
even point with current component prices, as can be seen in Figure 4.6, and with lower
component prices they are still less effective (in relative terms) than in the previous
scenarios.
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Figure 4.6: Scenario 3 summary: costs of optimal solutions per ESS for varying demand charge values, low
and high CAPEX. Orange bars represent baseline OPEX (no peak-shaving), green bars are with BESS, and

blue bars with HESS. Each bar has three segments, from bottom to top: energy costs, demand costs, and
CAPEX.
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Chapter 5

Summary and conclusions

Over the course of this Semester Project, a MATLAB code framework was developed
for the simulation of energy-storage-based peak-shaving of electrical power demand.
The specific setting investigated was that of a highway rest-stop equipped with BEV
fast-charging stations.

Using the new framework, the optimal design of a HESS and BESS was determined
for a variety of present-day and future scenarios, based on measured data from a
real-world rest-stop as well as synthesised data.

These simulations demonstrate the effectiveness of the new framework, which makes
it possible to run grid-searches over multiple parameters to find the cost-optimal so-
lution. Furthermore, these grid-searches can be executed in parallel, which allows
scaling to significantly larger simulations, search spaces, and resolutions.

To summarise the results of the simulations, with the current pricing of electricity and
ESS components (batteries, electrolyser, fuel cell and hydrogen tank), neither of the
energy storage systems considered (battery and hydrogen) is cost-effective for peak-
shaving the power load of BEV fast-charging stations at a highway rest stop. However,
as demand charges increase and component costs fall to predicted values, both sys-
tems can become effective. The battery system is in general cheaper than an equiva-
lent hydrogen system, however, as the traffic share of BEVs increases in the future and,
consequently, the required storage capacity increases, hydrogen systems are expected
to outperform battery storage. The effectiveness of peak-shaving is significantly lim-
ited by the high-usage policy as it was implemented for this project, particularly for
high-load scenarios.

5.1 Qutlook

It remains to be clarified whether the high-usage policy of electricity pricing as de-
scribed in Section 3.7 accurately reflects the expected future evolution. For the pur-
poses of this project, the high-usage demand charges increase proportionally to the
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low-usage demand charges; however, it has been shown that this would penalise
peak-shaving in the future. Keeping instead the high-usage demand charges more
or less constant while increasing the low-usage charges could greatly incentivise peak-
shaving via energy storage, particularly as loads increase.

In all the simulations performed for this project, the ESS components were assumed
to function at maximum performance for the entire simulation time horizon. In reality,
ESS components (batteries, electrolysers and fuel cell) would endure gradual degrada-
tion depending on their operation, reducing their efficiency. Implementing some form
of component degradation could significantly improve the accuracy of the simulations,
and play a role in the optimal design process.

One of the findings of this project was how much of an impact the simulation time
horizon can have on the quality of results. As a result, it would be beneficial to
re-evaluate the findings from the high-load scenario (scenario 3) with a longer time
horizon to reduce the sensitivity to initial conditions and sub-optimal local solutions.

Finally, the current project focused primarily on the optimal design of a HESS, and
used what amounts to an open-loop controller with pre-computed control inputs.
However, real-world implementation of an ESS would require some form of closed-
loop control. The effectiveness of different control strategies could be evaluated, such
as PID or model-predictive controllers.



Appendix A

User Guide to the ESPS framework

This appendix serves as an overview and user guide to the ESPS (Energy Storage for
Peak Shaving) framework.

A.1 Directory and package structure

Listing A.1 shows an overview of the directory structure of the project, with some
annotations describing the function of important directories.

1 bevfc-peak-shaving

2 |-- +esps -> ESPS package top-level

3| |-— +models -> Contains concrete Model implementations

4 | \—— +post -> Contains post-processing utility functions

5 | |-- +runners —> Contains concrete Simulation Runners

6 | |-- +simulations -> Contains concrete Simulations

7 |-- +unitTests

8 | |-- +utils —-> Contains general utility functions

9 | \-- +validationTests

10 |-- +examples —> Contains examples for the ESPS framework

11 |-- inputs —-> Directory where simulation inputs are stored
12 | \-- unified -> Input files for every simulation

13 |—— +main -> Utility scripts for easy execution

14 |-- outputs —-> Directory where simulation outputs are stored
15 \-- slx -> Directory where Simulink models are stored

Listing A.1: Directory structure of the ESPS project

A.1.1 MATLAB packages

Packages in MATLAB are a way of organising code into namespaces. Any folder with
a name starting with + will be interpreted as a package by MATLAB. As long as the
package folder is in the MATLAB path, any functions, classes or subpackages will be
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accessible to MATLAB scripts with dot-notation. For example, if the current working
directoryis bevfc-peak-shaving:

% Function runEtaHESS defined in +main/runEtaHESS.m

>> main.runEtaHESS () ;

[...]

% Class SimEtaHESS defined in +esps/+simulations/SimEtaHESS.m
>> m = esps.simulations.SimEtaHESS () ;

% We can import a class from a package

>> import esps.runners.ParallelGridSearch

O N N Uk W N =

Class ParallelGridSearch is now directly accessible, e.g. we can
show a list of its public methods
>> methods ParallelGridSearch

_ = =
N = O
o oo

13 ParallelGridSearch getSearchGrid setUserName
14 addSearchParam readInputs validateData
15 findUniqueOutputDirectory run writeOutputs
16 getOutputData runAndWrite

Jay
J

)

% Show a list of public properties of a class
>> properties esps.SimulationDataIO
inputFileDirectory

outputFileDirectory

N N = =
= S © ™

Listing A.2: Examples for MATLAB packages

A.1.2 1/0 file format

Inputs and outputs for simulations are stored in the JSON+C format. JSON (JavaScript
Object Notation) is a format commonly used to store data structures in text files.
MATLAB natively supports converting structure arrays to/from JSON strings with
the jsonencode and jsondecode functions. For the purposes of this project, a simple
parser was written to allow the use of JSON+C (JSON with comments) in MATLAB.

1 { // example.jsonc

2 / *

8 * An example of a valid input file.

4 */

5 "inputs": {

6 // Parameters for peak-shaving algorithm
7 "shavingAmount": 0.75,

8 "chargingAmount": 0.5,

9 "FILEIN_time": "oneWeek_time.csv",

10 "FILEIN_powerDemand": "oneWeek_ACChargingPower.csv",
11 )

12 }

Listing A.3: Example of a valid input JSON+-C file with both multi-line and single-line comments.
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A.1. Directory and package structure

Listing A.3 shows an example of a short input file. When parsed, this will create a
structure array with a single field named inputs, which in turn contains several fields
for the different parameters and inputs to be used in simulation.

Listing A.4 shows an example of what the output of a simulation might look like. In
addition to the inputs, the structure array now has two additional fields. meta contains
information about how the simulation was executed, such as code version, simulation
runner and simulation used, start/end times, and, in the case of a grid search (parallel
or otherwise), the names of the search parameters.

results is an array containing one entry for each model of the simulation, in the order
in which they were executed. Each element of the results array has a ModelName
field, containing the name of the model and an output field which contains all of the
data output by the model.

1|
2 "inputs": {

3 "shavingAmount": 0.2,

4 "chargingAmount": 0.22962962962962963,

5 "FILEIN_time": "scenarioOl_time.csv",

6 "FILEIN_powerDemand": "scenario0Ol_ACChargingPower.csv"
7 Bo

8 "meta": {

9 "SimulationRunnerName": "ParallelGridSearch",

10 "CodeVersion": "v1.0.100",

11 "UserName": "sean",

12 "SearchParams": [

13 "shavingAmount",

14 "chargingAmount"

15 I

16 "StartTime": "26-Mar-2022 20:06:00",

17 "SimulationName": "SimCompare",

18 "EndTime": "26-Mar-2022 21:22:50"

19 s

20 "results": [

21 {

22 "ModelName": "PeakShaving",

23 "output": {

24 "totalShavedEnergy": 1.32632770286208E+12,

25 "totalChargedEnergy": 2.9901067212800166E+12,
26 "FILEOUT_ESSetPoint": "ESSetPoint.csv"

27 }

28 Iz

29 {

30 "ModelName": "MinESSCap",

31 "output": {

32 "minRequiredESSCapacity": 1.2648217394046636E+8
33 }

34 }

@ W
X G
—
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Listing A.4: Example of an output JSON+C file resulting from a grid-search.

FILEIN and FILEOUT

Some inputs, such as time series, can be very large and would overcrowd the JSON+C
file. To avoid this, rrLEIN and F1LEOUT fields can be used to read and write large data
sets to and from CSV files.

When parsing an input file, any field whose name starts with the prefix rFILEIN.
will be interpreted as being the name of a CSV file to read. So, in the example
from Listing A.3, the field rILEIN time will cause the framework to read the file
dataFiles/scenarioOl_time.csv (Where the datariles directory is located in the same
folder as the input file) using MATLAB'’s builtin readmatrix function and store its
contents in a new field named inputs.time.

When writing outputs, the reverse process takes place: the FILEIN time field will cause

the framework to write the contents of the time field to the file dataFiles/scenario0l_time.csv
(this time located in the directory of the output file) using MATLAB’s builtin writematrix
function and remove the time field before converting the output structure array to

JSON format.

r1Le0UT fields behave in the same manner as rrLEIN fields, but are used in the results
array for model outputs.

A.2 ESPS models

Models are the fundamental building block of ESPS simulations. Concrete models are
stored in the +esps/+models/ directory and must extend the esps.Model class.

A.2.1 Creating a new model
Here we will briefly look at the steps required to create a new ESPS model:

* Begin by duplicating one of the existing models: for this example we will copy
+esps/+models/DummyModelA.m tO +esps/+models/MyNewModel . m.

¢ Change the class name of the model, on line 1 of the new script, to match the file
name of the script — in our case MyNewModel. It is important that the class name
match the file name exactly (this is imposed by MATLAB).

* The requiredInputNames property is a string array of input fields for the model.
Models may only read inputs that are explicitly declared in this list. Modify the
list as required; it is strongly recommended you use comments to clearly indicate
the unit and function of each input.
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* The ocutputNames property is a string array of output fields for the model. A
model may only set an output field if it has been explicitly declared in the
outputNames array, and must set each declared output every time it is run. The
only exception are r1LeoUT fields, which will be given a default file name if de-
clared but not set. Modify the list as required; it is strongly recommended you
use comments to clearly indicate the unit and function of each input.

¢ The run. method is the core of our new model. It is called by the framework
when the model is executed. In here, use self.dataHandler.getAllInputs() tO
get a structure array with one field for each declared input. Alternatively, use
self.dataHandler.getInput ("inputName") to get the inputs one at a time. After
performing operations on the inputs, use
self.dataHandler.setOutput ("outputName", value) u)seteach.deckued.output

Listing A.5 shows an example of a concrete ESPS model implementation.

O 0 N N Ul W N =

NN RN N NN DNDNDNDN P 2 s el el el el el
O 0 N\ O Uk WP O O 00N ke W N O

classdef MyNewModel < esps.Model
properties (Constant, Access=protected)
requiredInputNames = [...
"time", ... % [s] Array of time coordinates
"velocity", ... % [m/s] Array of velocity values over time
"initialPosition"...% [m] Initial position
1i
outputNames = [...
"position",... % [m] Position of the object over time
"FILEOUT_position"...
1i
end
methods (Access=protected)
function run.(self)
% Get inputs
in = self.dataHandler.getAllInputs();
% Perform some calculations
position = ones(length(in.time), 1) % in.initialPosition;
position = position + cumtrapz(in.time, in.velocity);
% Write outputs
self.dataHandler.setOutput ("position", position);
% Notice how FILEOUT_position is declared but not set;
% the framework will give it a default value of "position.csv"
end
end
end

Listing A.5: Example of a concrete ESPS model implementation.
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Simulink models

Simulink models can be called from within an ESPS model. See
+esps/+models/simpleBEss.m for a working example.

A.3 ESPS simulations

Simulations in the ESPS framework consist essentially of a collection of models. They
are responsible for executing each model and ensuring each model receives the correct
inputs. Concrete simulations are stored in the +esps/+simulations/ directory and
must extend the esps.Simulation class.

A.3.1 How models look for inputs

In order to better understand how simulations work, it is useful to first understand
how models navigate the inputs/results structure array to find their required fields.
When a model calls self.dataHandler.getInput ("inputName"), the following steps
take place:

1. If there are results from models previously executed by this simulation, iterate
over them in reverse order (newest to oldest).

2. If the output of a previous model matches the name of the requested input,
return that value.

3. If there were no outputs from previous models, or if they were all checked, look
for a field among the inputs that has a name matching the requested input.

4. If the input could not be found, throw an error.

This simple algorithm is implemented in the esps.utils.fetchField function, which
is also useful for post-processing of the data.

Using this procedure to look for model inputs means we can use the outputs of one
model as input for a subsequent model in the same simulation.

A.3.2 Model input/output mapping

Simulations can alter the input/output process of models by performing input/output
mapping in their getModels method.

By calling modelInstance.mapInput ("oldName", "newName") On an instance of a model,
we can effectively “rename” an input of the model. Now, when that instance’s run_
method (described in the previous section) calls se1f.datalandler.getInput ("oldInput"),
the value of the input field newName will be returned instead.

In a similar vein, outputs of model instances can be renamed with

modelInstance.mapOutput ("oldName", "newName").
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This is useful for example to execute the same model multiple times within the same
simulation, but with different outputs each time. See +esps/+simulations/SimOPEX.m
for a working example.

A.3.3 Creating a new simulation

Here we will briefly look at the steps required to create a new ESPS simulation:

Begin by duplicating one of the existing simulations: for this example we will

COpY +esps/+simulations/DummySimulation.mtO +esps/+simulations/MyNewSim.m.

Change the class name of the simulation, on line 1 of the new script, to match
the file name of the script — in our case MyNewsim. It is important that the class
name match the file name exactly (this is imposed by MATLAB).

Change the simulationName property to match the class name — in our case
MyNewSim.

The modelNames property is a string array of model names. Each model name
must match the name of a concrete model implementation in +esps/+models/.

The run. method is called by the framework when the simulation is executed.
Typically, this method amounts to calling se1f.getModels (), looping over the
resulting model instance array, and calling the . run () method on each. If so, con-
sider ushng esps.simulations.SequentialSimulation as your base class rather
than esps.Simulation directly. See esps.simulations.SimOPEX for a working ex-
ample.

The getModels method returns a list of model instances. The type of each in-
stance must match the names declared in the modelnames property. This is also
where input/output mapping occurs.

Listing A.6 shows an example of a concrete ESPS simulation implementation. Notice
that the same could be achieved by using esps.simulations.SequentialSimulation as
base class rather than esps.simulation directly. See esps.simulations.simoPEx for a
working example.

classdef MyNewSim < esps.Simulation

properties (Access=protected)

simulationName = "MyNewSim";

modelNames = ["MyNewModel", "MyNewModel"];
end

methods (Access=protected)
function outData = run-_(self, inputData)
% Execute each model in sequence
outData = inputData;
modelInstances = self.getModels|();

for k = 1 : length(modelInstances)
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13 outData = modelInstances{k}.run (outData);

14 end

15 end

16

17 function modelInstances = getModels (self)

18 modelInstances = getModelsf@esps.Simulation (self);

19

20 % IO mapping for the bike

21 modelInstances{l}.mapInput ("velocity", "velocity.bike");

22 modelInstances{l}.mapInput ("initialPosition",
"initialPosition_bike");

23 modelInstances{l}.mapOutput ("position", "position_bike");

24 modelInstances{l}.mapOutput ("FILEOUT.position",
"FILEOUT_ position_bike");

25

26 % I0 mapping for the car

27 modelInstances{2}.mapInput ("velocity", "velocity._car");

28 modelInstances{2}.mapInput ("initialPosition",
"initialPosition_car");

29 modelInstances{Z}.mapOutput("position", "position_car");

30 modelInstances{2}.mapOutput ("FILEOUT position",
"FILEOUT_position_car");

31 end

32 end

33 end

Listing A.6: Example of a concrete ESPS simulation implementation.

A.4 Running simulations with ESPS

A4.1 SequentialSimulation

The sequentialsimulation is an easy way to quickly test one or more models. The
code in Listing A.7 is implemented in +examples/runMyModel.m.

1 function runMyModel ()

2 % Create instance of a simulation object

3 sim = esps.simulations.SequentialSimulation();

4 sim.addModels (["MyNewModel"]) ;

5 sim.setName ("MyNewModelSim") ;

6

7 % Create an instance of a simulation runner for our simulation
8 runner = esps.runners.SimpleSimulationRunner (sim) ;

9

10 % Read our input files

11 runner.readInputs ("myNewInputs. jsonc", "inputs/myNewInputs/");
12

13 % Run the simulation

14 runner.run() ;

15
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A4,
16 % Write the outputs to file
17 runner.writeOutputs () ;
18 end

Listing A.7: Running a SequentialSimulation.

A.4.2 Custom simulations

But what if we want to compare a bicycle moving at constant velocity with an acceler-
ating car? We can use the custom simulation we implemented in Listing A.6, which
uses the new model twice, with different inputs. Then, plot the results to see the
comparison. The code in Listing A.8 is implemented in +examples/runMySim.m.

1 function runMySim()

2 % Create instance of a simulation object

3 sim = esps.simulations.MyNewSim() ;

4

5 % Create an instance of a simulation runner for our simulation
6 runner = esps.runners.SimpleSimulationRunner (sim) ;

7

8 % Read our input files

9 runner.readInputs ("myNewInputs. jsonc", "inputs/myNewInputs/");
10

11 % Run the simulation

12 runner.run() ;

13

14 % Write the outputs to file

15 runner.writeOutputs () ;

16

17 % Get the results

18 outData = runner.getOutputData () ;

19 outData = outData{l};

20 time = esps.utils.fetchField(outData, "time");

21 position_car = esps.utils.fetchField(outData, "position_car" );
22 position_-bike = esps.utils.fetchField (outData, "position_bike");
23

24 % Plot the results

25 f = figure(); hold on;

26 plot (time, position_car); plot(time, position_bike);

27 legend(["Car", "Bike"], 'Location', 'northwest');

28 ylabel ("Distance [m]"); xlabel ("Time [s]");

29 end

Listing A.8: Running a custom simulation and plotting the results.

49



A. UsgeR GUIDE TO THE ESPS FRAMEWORK

50

Distance [m]

1800

1600

1400

1200

=
o
o
o

800

600

400

200

Car
L Bike

0 10 20 30 40 50

Time [s]

Figure A.1: Result of the script in Listing A.8.
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A.4.3 Running grid searches

To run a grid search, all we need to do is change line 6 of our script to use the
esps.runners.GridSearchRunner class, and specify our parameter sweeps with runner.addsearchParam.
runner.addSearchParam("v", a, b, n) will generate the following n grid points

spanning the range [a; b]:

Uj:ll+ b—ﬂ)]., jZO,...,i’l—l

(n—1

Listing A.9 shows an example of a one-dimensional grid-search.

1 function runMySimGS ()

2 % Create instance of a simulation object

3 sim = esps.simulations.MyNewSim() ;

4

5 % Create an instance of a simulation runner for our simulation

6 runner = esps.runners.GridSearchRunner (sim) ;

7

8 % Read our input files

9 runner.readInputs ("myNewInputs. jsonc", "inputs/myNewInputs/");

10

11 % Set up a sweep of the car's initial position from 0 to 100 with
10 points

12 runner.addSearchParam("initialPosition_car", 0, 100, 10);

13

14 % Run the simulation

15 runner.run() ;

16

17 % Write the outputs to file

18 runner.writeOutputs () ;

19 end

Listing A.9: Running a one-dimensional grid-search.

Parallel grid searches

To run a grid search in parallel, simply use esps.runners.parallelGridsearch instead
of esps.runners.GridsearchRunner. Optionally for particularly large grid-searches,
you may wish to use runner.runandwrite (), which is more memory-efficient than
runner.run () followed by runner.writeOutputs ().
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