OPTIMAL DESIGN OF A HESS FOR PEAK-SHAVING BEV FAST CHARGING DEMAND AT A HIGHWAY REST STOP

Semester Project

SEAN BONE

SUPERVISOR:
CHRISTIAN PETER
PAUL SCHERRER INSTITUT

APRIL 7, 2022

SETTING: HIGHWAY REST STOP FOR BATTERY-ELECTRIC CARS

Image source: carscoops.com

EXAMPLE ONE-WEEK POWER DEMAND PROFILE

EXAMPLE OF PEAK-SHAVED POWER DEMAND

BACKGROUND HESS

Hydrogen Energy Storage System

Hydrogen Energy Storage System

Trade-offs:

- CAPEX vs OPEX
- HESS vs BESS
- Sizing of components: ELY, H2 tank, FC, battery

Hydrogen Energy Storage System

Trade-offs:

- CAPEX vs OPEX
- HESS vs BESS
- Sizing of components: ELY, H2 tank, FC, battery
- Present and future scenarios

Illustration icons from stock.adobe.com (non-commercial license)

BACKGROUND HESS IMPLEMENTATION

IMPLEMENTATION: FRAMEWORK STRUCTURE

5 | 10

IMPLEMENTATION: FRAMEWORK STRUCTURE

- Structured input/output format
- Each output contains all inputs for reproducibility
- Modular design allows adding or replacing of parts independently
- Allows for longer and larger simulations

IMPLEMENTATION: BESS power conversion efficiency

IMPLEMENTATION: BESS E-RATE TO EFFICIENCY

IMPLEMENTATION: HESS EFFICIENCY

IMPLEMENTATION: PEAK-SHAVING ALGORITHM

BACKGROUND HESS IMPLEMENTATION RESULTS

GRID-SEARCH HEATMAPS

GRID-SEARCH HEATMAPS

- Each cell in heatmap is a full simulation
- $\bullet \sim 40$ mins per sim x 784 cells ≈ 22 days of simulation time
- Ran in a weekend thanks to parallelisation of grid-search!

10

OPEX: Benutzungsdauer

Usage time (Benutzungsdauer):

$$BD = \frac{Total \; energy \; [kWh]}{Avg. \; monthly \; peak \; [kW]}$$

OPEX: BENUTZUNGSDAUER

Usage time (Benutzungsdauer):

$$BD = \frac{Total \ energy \ [kWh]}{Avg. \ monthly \ peak \ [kW]}$$

Rates change for BD > 3500 h:

- lacktriangle Energy charges $imes \sim 0.5$
- \blacksquare Demand charges $\times \sim 2$

HESS vs BESS: IMPACT OF USAGE TIME (BENUTZUNGSDAUER)

2 | 16

Summary: 2019 data (all year)

Summary: 2019 data (all year)

SUMMARY: 30% BEV SHARE (SYNTHESISED, ONE WEEK)

With current pricing:

- BESS is close to trade-off point
- HESS is economically un-viable

With current pricing:

- BESS is close to trade-off point
- HESS is economically un-viable

With predicted future pricing:

- BESS becomes economically beneficial
- HESS can become viable and even compete with BESS in some scenarios

With current pricing:

- BESS is close to trade-off point
- HESS is economically un-viable

With predicted future pricing:

- BESS becomes economically beneficial
- HESS can become viable and even compete with BESS in some scenarios

...but still limited by Benutzungsdauer.

With current pricing:

- BESS is close to trade-off point
- HESS is economically un-viable

With predicted future pricing:

- BESS becomes economically beneficial
- HESS can become viable and even compete with BESS in some scenarios

...but still limited by Benutzungsdauer.

Code framework proof-of-concept:

- Grid-searches are easy to run and reproduce
- Parallelisation allows for larger simulations and grid-searches
- Structured outputs allow for simplified handling of results for plotting etc.

Thank You! Questions?

1-YEAR DATA VS 1-WEEK DATA

IMPACT OF BENUTZUNGSDAUER: 30% BEV SHARE (SYNTHESISED, ONE WEEK)

Summary: 30% BEV share (synthesised, one week)

Given a peak-shaving plan, how big does my H2 tank need to be?

MINIMUM REQUIRED CAPACITY ALGORITHM

Given a peak-shaving plan, how big does my H2 tank need to be?

- Non-trivial question, as answer depends on actual power demand, ESS efficiencies, etc...
- Previously done by trial-and-error hard to reproduce reliably!
- New algorithm computes a hard lower bound to capacity of any ESS
- Estimate can be refined based on efficiencies of specific ESS
- Proof of correctness in the full report