Optimisation of a FLIP Fluids solver

In spring 2021 I joined forces with three classmates, and as part of the ETH lecture “Advanced Systems Lab” we revisited the FLIP Fluids Solver project from two years prior. The goal this time was to optimise the code using the skills acquired in this lecture and improve the time required to run a simulation.

Project EULER: supersonic sounding rocket

In the academic year 2019-2020 I joined ARIS Space, the student association for space in german Switzerland. There I joined team EULER, whose mission statement was to build a sounding rocket for the 2020 Spaceport America Cup competition which would reach the target apogee of 30,000 feet (9.144 km) with as much precision as possible.

BSc Thesis in Computational Fluid Dynamics

My Batchelor’s Thesis was titled “Comparative study of density-based versus pressure-based solvers for supersonic flow”. The idea of the thesis stemmed from my work at ARIS, where one of the natural questions that arose was which solver would be best for my use case: simulating the aerodynamics of a supersonic sounding rocket. Under the supervision

FLIP fluids simulation

Update: as of 2022, the full code has been open-sourced and is available on GitHub. In autumn 2018, I teamed up with classmates Silvia Nauer and Mikael Stellio for a project in the ETHZ course Physically-Based Simulation for Computer Graphics. The objective of our project was to create a video of a meteorite crashing into

Matura Project: Elliptic Curves

In this document I explore the mathematical peculiarities of modular arithmetic and Elliptic Curves, and then move on to their representation with the programming language Python. Elliptic Curves are a class of mathematical curves with a very peculiar property: any non-vertical line that intersects an Elliptic Curve in one point, also has two other intersection